Prospects of using Bayesian model averaging for the calibration of one-month forecasts of surface air temperature over South Korea

2013 ◽  
Vol 49 (3) ◽  
pp. 301-311 ◽  
Author(s):  
Chansoo Kim ◽  
Myoung-Seok Suh
Author(s):  
Seung-Ki Min ◽  
Daniel Simonis ◽  
Andreas Hense

This study explores the sensitivity of probabilistic predictions of the twenty-first century surface air temperature (SAT) changes to different multi-model averaging methods using available simulations from the Intergovernmental Panel on Climate Change fourth assessment report. A way of observationally constrained prediction is provided by training multi-model simulations for the second half of the twentieth century with respect to long-term components. The Bayesian model averaging (BMA) produces weighted probability density functions (PDFs) and we compare two methods of estimating weighting factors: Bayes factor and expectation–maximization algorithm. It is shown that Bayesian-weighted PDFs for the global mean SAT changes are characterized by multi-modal structures from the middle of the twenty-first century onward, which are not clearly seen in arithmetic ensemble mean (AEM). This occurs because BMA tends to select a few high-skilled models and down-weight the others. Additionally, Bayesian results exhibit larger means and broader PDFs in the global mean predictions than the unweighted AEM. Multi-modality is more pronounced in the continental analysis using 30-year mean (2070–2099) SATs while there is only a little effect of Bayesian weighting on the 5–95% range. These results indicate that this approach to observationally constrained probabilistic predictions can be highly sensitive to the method of training, particularly for the later half of the twenty-first century, and that a more comprehensive approach combining different regions and/or variables is required.


Author(s):  
Lorenzo Bencivelli ◽  
Massimiliano Giuseppe Marcellino ◽  
Gianluca Moretti

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1098
Author(s):  
Ewelina Łukaszyk ◽  
Katarzyna Bień-Barkowska ◽  
Barbara Bień

Identifying factors that affect mortality requires a robust statistical approach. This study’s objective is to assess an optimal set of variables that are independently associated with the mortality risk of 433 older comorbid adults that have been discharged from the geriatric ward. We used both the stepwise backward variable selection and the iterative Bayesian model averaging (BMA) approaches to the Cox proportional hazards models. Potential predictors of the mortality rate were based on a broad range of clinical data; functional and laboratory tests, including geriatric nutritional risk index (GNRI); lymphocyte count; vitamin D, and the age-weighted Charlson comorbidity index. The results of the multivariable analysis identified seven explanatory variables that are independently associated with the length of survival. The mortality rate was higher in males than in females; it increased with the comorbidity level and C-reactive proteins plasma level but was negatively affected by a person’s mobility, GNRI and lymphocyte count, as well as the vitamin D plasma level.


Sign in / Sign up

Export Citation Format

Share Document