CNOP-based sensitive areas identification for tropical cyclone adaptive observations with PCAGA method

2017 ◽  
Vol 53 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Lin-Lin Zhang ◽  
Shi-Jin Yuan ◽  
Bin Mu ◽  
Fei-Fan Zhou
2009 ◽  
Vol 137 (5) ◽  
pp. 1623-1639 ◽  
Author(s):  
Mu Mu ◽  
Feifan Zhou ◽  
Hongli Wang

Abstract Conditional nonlinear optimal perturbation (CNOP), which is a natural extension of the linear singular vector into the nonlinear regime, is proposed in this study for the determination of sensitive areas in adaptive observations for tropical cyclone prediction. Three tropical cyclone cases, Mindulle (2004), Meari (2004), and Matsa (2005), are investigated. Using the metrics of kinetic and dry energies, CNOPs and the first singular vectors (FSVs) are obtained over a 24-h optimization interval. Their spatial structures, their energies, and their nonlinear evolutions as well as the induced humidity changes are compared. A series of sensitivity experiments are designed to find out what benefit can be obtained by reductions of CNOP-type errors versus FSV-type errors. It is found that the structures of CNOPs may differ much from those of FSVs depending on the constraint, metric, and the basic state. The CNOP-type errors have larger impact on the forecasts in the verification area as well as the tropical cyclones than the FSV-types errors. The results of sensitivity experiments indicate that reductions of CNOP-type errors in the initial states provide more benefits than reductions of FSV-type errors. These results suggest that it is worthwhile to use CNOP as a method to identify the sensitive areas in adaptive observation for tropical cyclone prediction.


2013 ◽  
Vol 141 (11) ◽  
pp. 4008-4027 ◽  
Author(s):  
Brett T. Hoover ◽  
Chris S. Velden ◽  
Sharanya J. Majumdar

Abstract To efficiently and effectively prioritize resources, adaptive observations can be targeted by using some objective criteria to estimate the potential impact an initial condition perturbation (or analysis increment) in a specific region would have on the future forecast. Several objective targeting guidance techniques have been developed, including total-energy singular vectors (TESV), adjoint-derived sensitivity steering vectors (ADSSV), and the ensemble transform Kalman filter (ETKF), all of which were tested during the 2008 The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) and the Office of Naval Research Tropical Cyclone Structure-2008 (TCS-08) field experiments. An intercomparison between these techniques is performed in order to find underlying physical mechanisms in the respective guidance products, based on four tropical cyclone (TC) cases from the T-PARC/TCS-08 field campaigns. It is found that the TESV energy norm and the ADSSV response function are largely indirect measures of the TC track divergence that can be produced by an initial condition perturbation, explaining the strong correlation between these products. The downstream targets routinely chosen by the ETKF guidance system are often not found in the TESV and ADSSV guidance products, and it is found that downstream perturbations can affect the steering of a TC through the development of a Rossby wave in the subtropics that modulates the strength of the nearby subtropical ridge. It is hypothesized that the ubiquitousness of these downstream targets in the ETKF is largely due to the existence of large uncertainties downstream of the TC that are not taken into consideration by either the TESV or ADSSV techniques.


2006 ◽  
Vol 134 (9) ◽  
pp. 2354-2372 ◽  
Author(s):  
S. J. Majumdar ◽  
S. D. Aberson ◽  
C. H. Bishop ◽  
R. Buizza ◽  
M. S. Peng ◽  
...  

Abstract Airborne adaptive observations have been collected for more than two decades in the neighborhood of tropical cyclones, to attempt to improve short-range forecasts of cyclone track. However, only simple subjective strategies for adaptive observations have been used, and the utility of objective strategies to improve tropical cyclone forecasts remains unexplored. Two objective techniques that have been used extensively for midlatitude adaptive observing programs, and the current strategy based on the ensemble deep-layer mean (DLM) wind variance, are compared quantitatively using two metrics. The ensemble transform Kalman filter (ETKF) uses ensembles from NCEP and the ECMWF. Total-energy singular vectors (TESVs) are computed by the ECMWF and the Naval Research Laboratory, using their respective global models. Comparisons of 78 guidance products for 2-day forecasts during the 2004 Atlantic hurricane season are made, on both continental and localized scales relevant to synoptic surveillance missions. The ECMWF and NRL TESV guidance identifies similar large-scale target regions in 90% of the cases, but are less similar to each other in the local tropical cyclone environment (56% of the cases) with a more stringent criterion for similarity. For major hurricanes, all techniques usually indicate targets close to the storm center. For weaker tropical cyclones, the TESV guidance selects similar targets to those from the ETKF (DLM wind variance) in only 30% (20%) of the cases. ETKF guidance using the ECMWF ensemble is more like that provided by the NCEP ensemble (and DLM wind variance) for major hurricanes than for weaker tropical cyclones. Minor differences in these results occur when a different metric based on the ranking of fixed storm-relative regions is used.


2009 ◽  
Vol 137 (2) ◽  
pp. 505-524 ◽  
Author(s):  
Hyun Mee Kim ◽  
Byoung-Joo Jung

Abstract In this study, the structure and evolution of total energy singular vectors (SVs) of Typhoon Usagi (2007) are evaluated using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) and its tangent linear and adjoint models with a Lanczos algorithm. Horizontal structures of the initial SVs following the tropical cyclone (TC) evolution suggest that, relatively far from the region of TC recurvature, SVs near the TC center have larger magnitudes than those in the midlatitude trough. The SVs in the midlatitude trough region become dominant as the TC passes by the region of recurvature. Increasing magnitude of the SVs over the midlatitude trough regions is associated with the extratropical transition of the TC. While the SV sensitivities near the TC center are mostly associated with warming in the midtroposphere and inflow toward the TC along the edge of the subtropical high, the SV sensitivities in the midlatitude are located under the upper trough with upshear-tilted structures and associated with strong baroclinicity and frontogenesis in the lower troposphere. Given the results in this study, sensitive regions for adaptive observations of TCs may be different following the TC development stage. Far from the TC recurvature, sensitive regions near TC center may be important. Closer to the TC recurvature, effects of the midlatitude trough become dominant and the vertical structures of the SVs in the midlatitude are basically similar to those of extratropical cyclones.


Sign in / Sign up

Export Citation Format

Share Document