Research on Path Planning Algorithm of Autonomous Vehicles Based on Improved RRT Algorithm

Author(s):  
Guanghao Huang ◽  
Qinglu Ma
Author(s):  
Nurul Saliha Amani Ibrahim ◽  
Faiz Asraf Saparudin

The path planning problem has been a crucial topic to be solved in autonomous vehicles. Path planning consists operations to find the route that passes through all of the points of interest in a given area. Several algorithms have been proposed and outlined in the various literature for the path planning of autonomous vehicle especially for unmanned aerial vehicles (UAV). The algorithms are not guaranteed to give full performance in each path planning cases but each one of them has their own specification which makes them suitable in sophisticated situation. This review paper evaluates several possible different path planning approaches of UAVs in terms optimal path, probabilistic completeness and computation time along with their application in specific problems.


2016 ◽  
Vol 49 (1) ◽  
pp. 652-657 ◽  
Author(s):  
D Ganesha Perumal ◽  
B Subathra ◽  
G Saravanakumar ◽  
Seshadhri Srinivasan

2021 ◽  
Vol 13 (22) ◽  
pp. 4644
Author(s):  
Heba Kurdi ◽  
Shaden Almuhalhel ◽  
Hebah Elgibreen ◽  
Hajar Qahmash ◽  
Bayan Albatati ◽  
...  

With the extensive developments in autonomous vehicles (AV) and the increase of interest in artificial intelligence (AI), path planning is becoming a focal area of research. However, path planning is an NP-hard problem and its execution time and complexity are major concerns when searching for optimal solutions. Thus, the optimal trade-off between the shortest path and computing resources must be found. This paper introduces a path planning algorithm, tide path planning (TPP), which is inspired by the natural tide phenomenon. The idea of the gravitational attraction between the Earth and the Moon is adopted to avoid searching blocked routes and to find a shortest path. Benchmarking the performance of the proposed algorithm against rival path planning algorithms, such as A*, breadth-first search (BFS), Dijkstra, and genetic algorithms (GA), revealed that the proposed TPP algorithm succeeded in finding a shortest path while visiting the least number of cells and showed the fastest execution time under different settings of environment size and obstacle ratios.


2013 ◽  
Vol 33 (8) ◽  
pp. 2289-2292 ◽  
Author(s):  
Dongcheng MO ◽  
Guodong LIU

Sign in / Sign up

Export Citation Format

Share Document