Yucasin and cinnamic acid inhibit IAA and flavonoids biosynthesis minimizing interaction between maize and endophyte Aspergillus nomius

Symbiosis ◽  
2020 ◽  
Vol 81 (2) ◽  
pp. 149-160 ◽  
Author(s):  
Asif Mehmood ◽  
Anwar Hussain ◽  
Muhammad Irshad ◽  
Muhammad Hamayun ◽  
Amjad Iqbal ◽  
...  
2018 ◽  
Vol 16 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Zehra Tuğçe Gür ◽  
Fatma Sezer Şenol ◽  
Suhaib Shekfeh ◽  
İlkay Erdoğan Orhan ◽  
Erden Banoğlu ◽  
...  

Background: A series of novel cinnamic acid piperazine amide derivatives has been designed and synthesized, and their biological activities were also evaluated as potential tyrosinase inhibitors. Methods: Compounds 9, 11 and 17 showed the most potent biological activity (IC50 = 66.5, 61.1 and 66 µM, respectively). In silico docking simulation was performed to position compound 11 into the Agaricus bisporus mushroom tyrosinase’s active site to determine the putative binding interactions. Results and Conclusion: The results indicated that compound 11 could serve as a promising lead compound for further development of potent tyrosinase inhibitors.


2013 ◽  
Vol 10 (6) ◽  
pp. 529-534 ◽  
Author(s):  
Zhenghua Zhang ◽  
Jinbing Liu ◽  
Fengyan Wu ◽  
Liangzhong Zhao

2016 ◽  
Vol 24 (1) ◽  
pp. 75-86
Author(s):  
Y.N. Tan ◽  
◽  
A.H.A. Malek ◽  
M.Z.A. Malek ◽  
M.T. Zainuddin ◽  
...  

2009 ◽  
Vol 43 (12) ◽  
pp. 716-720 ◽  
Author(s):  
F. S. Murakami ◽  
L. S. Bernardi ◽  
R. N. Pereira ◽  
B. R. Valente ◽  
E. C. Vasconcelos ◽  
...  

2021 ◽  
Author(s):  
Nathalie D Lackus ◽  
Axel Schmidt ◽  
Jonathan Gershenzon ◽  
Tobias G Köllner

AbstractBenzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.


2021 ◽  
Vol 43 ◽  
pp. 150-153
Author(s):  
Stevine Claudiale Popwo Tameye ◽  
Ahri Bernie Djamen Mbeunkeu ◽  
Yannick Fouokeng ◽  
Nathalie Samantha Jouwa Tameye ◽  
Georges Bellier Tabekoueng ◽  
...  

1981 ◽  
Vol 36 (3-4) ◽  
pp. 222-233 ◽  
Author(s):  
Margareta Proksch

When the abaxial epidermis was peeled from 5 to 6 day old oat primary leaves, and 3 cm segments were floated on radioactive phenylalanine or cinnamic acid solutions, more than 90 per cent of the radioactivity was incorporated within 3 to 7 h depending on the developmental stage of the leaf. C-glycosylflavones were labelled within 15 min and radioactivity in these compounds increased for several hours. Pulse labelling and pulse chase experiments with either phenylalanine or cinnamic acid, unequivocally demonstrate that oat flavones are stable end products of metabolism. However, this procedure does not distinguish between sequential biosynthesis of various flavones and their interconversion. Cinnamic acid was more efficiently (ca. 20 x) converted into oat leaf flavones than was phenylalanine, when the precursor was fed to leaf pieces, and flavones recovered from mesophyll protoplasts. Different labelling patterns were obtained with whole leaf segments and protoplasts which apparently reflect differences in tissue specific flavone biosynthesis of mesophyll and epidermis. Isolated mesophyll protoplasts incubated with [14C]cinnamic acid synthesize 14C-labelled flavones characteristic of the mesophyll, as well as several unidentified phenylpropanoid derivatives not found in the intact tissue. Data suggest that photosynthetically active mesophyll cells are a main site of tissue specific flavone biosynthesis


Author(s):  
Mengqi Ding ◽  
Kaixuan Zhang ◽  
Yuqi He ◽  
Qian Zuo ◽  
Hui Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document