flavonoids biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Pengbo Xu ◽  
Liang Wu ◽  
Minghao Cao ◽  
Chao Ma ◽  
Kun Xiao ◽  
...  

Flavonoids belong to the family of polyphenolic secondary metabolites and contribute to fruit quality traits. It has been shown that MBW complexes (MYB-bHLH-WD40) regulate the flavonoids biosynthesis in different plants, but only a limited number of MBW complexes have been identified in strawberry species in general. In this study, we identified 112 R2R3-MYB proteins in woodland strawberry; 12 of them were found to have potential functions in regulating flavonoids biosynthesis by phylogenetic analysis. qRT-PCR assays showed that FvMYB3, FvMYB9, FvMYB11, FvMYB22, FvMYB64, and FvMYB105 mostly expressed at green stage of fruit development, aligned with proanthocyanidins accumulation; FvMYB10 and FvMYB41 showed higher expression levels at turning and ripe stages, aligned with anthocyanins accumulation. These results suggest that different MYBs might be involved in flavonoids biosynthesis at specific stages. Furthermore, FvMYB proteins were demonstrated to interact with FvbHLH proteins and induce expression from the promoters of CHS2 and DFR2 genes, which encode key enzymes in flavonoids biosynthesis. The co-expression of FvMYB and FvbHLH proteins in strawberry fruits also promoted the accumulation of proanthocyanidins. These findings confirmed and provided insights into the biofunction of MBW components in the regulation of flavonoid biosynthesis in woodland strawberry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kun Sun ◽  
Honggang Sun ◽  
Zonghao Qiu ◽  
Qiang Liu

Host-plant-associated bacteria affect the growth, vigor, and nutrient availability of the host plant. However, phyllosphere bacteria have received less research attention and their functions remain elusive, especially in forest ecosystems. In this study, we collected newly developed needles from sapling (age 5 years), juvenile (15 years), mature (25 years), and overmature (35 years) stands of Chinese fir [Cunninghamia lanceolata (Lamb.) Hook]. We analyzed changes in phyllosphere bacterial communities, their functional genes, and metabolic activity among different stand ages. The results showed that phyllosphere bacterial communities changed, both in relative abundance and in composition, with an increase in stand age. Community abundance predominantly changed in the orders Campylobacterales, Pseudonocardiales, Deinococcales, Gemmatimonadales, Betaproteobacteriales, Chthoniobacterales, and Propionibacteriales. Functional predictions indicated the genes of microbial communities for carbon metabolism, nitrogen metabolism, antibiotic biosynthesis, flavonoids biosynthesis, and steroid hormone biosynthesis varied; some bacteria were strongly correlated with some metabolites. A total of 112 differential metabolites, including lipids, benzenoids, and flavonoids, were identified. Trigonelline, proline, leucine, and phenylalanine concentrations increased with stand age. Flavonoids concentrations were higher in sapling stands than in other stands, but the transcript levels of genes associated with flavonoids biosynthesis in the newly developed needles of saplings were lower than those of other stands. The nutritional requirements and competition between individual trees at different growth stages shaped the phyllosphere bacterial community and host–bacteria interaction. Gene expression related to the secondary metabolism of shikimate, mevalonate, terpenoids, tocopherol, phenylpropanoids, phenols, alkaloids, carotenoids, betains, wax, and flavonoids pathways were clearly different in Chinese fir at different ages. This study provides an overview of phyllosphere bacteria, metabolism, and transcriptome in Chinese fir of different stand ages and highlights the value of an integrated approach to understand the molecular mechanisms associated with biosynthesis.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiongliang Wang ◽  
Yinguang Hou ◽  
Yu Wang ◽  
Hansheng Zhao

Abstract Background LncRNAs are extensively involved in plant biological processes. However, the lack of a comprehensive lncRNA landscape in moso bamboo has hindered the molecular study of lncRNAs. Moreover, the role of lncRNAs in secondary cell wall (SCW) biosynthesis of moso bamboo is elusive. Results For comprehensively identifying lncRNA throughout moso bamboo genome, we collected 231 RNA-Seq datasets, 1 Iso-Seq dataset, and 1 full-length cDNA dataset. We used a machine learning approach to improve the pipeline of lncRNA identification and functional annotation based on previous studies and identified 37,009 lncRNAs in moso bamboo. Then, we established a network of potential lncRNA-coding gene for SCW biosynthesis and identified SCW-related lncRNAs. We also proposed that a mechanism exists in bamboo to direct phenylpropanoid intermediates to lignin or flavonoids biosynthesis through the PAL/4CL/C4H genes. In addition, we identified 4 flavonoids and 1 lignin-preferred genes in the PAL/4CL/C4H gene families, which gained implications in molecular breeding. Conclusions We provided a comprehensive landscape of lncRNAs in moso bamboo. Through analyses, we identified SCW-related lncRNAs and improved our understanding of lignin and flavonoids biosynthesis.


2021 ◽  
Vol 43 (9) ◽  
Author(s):  
Rana Naveed Ur Rehman ◽  
Sajid Ali ◽  
Mahmood Ul Hasan ◽  
Raheel Anwar ◽  
Muhammad Wasim Haider ◽  
...  

2021 ◽  
Vol 25 (05) ◽  
pp. 969-980
Author(s):  
Brandon Estefano Morales-Merida

The bell pepper (Capsicum annuum L.) is classified as a Solanaceae of economic importance with high nutritional value. However, its production is limited by abiotic factors such as low temperature and UV-B radiation, which can cause extensive damage to crops. Plants may respond to environmental stressors by inducing several morphological, physiological, biochemical and molecular changes. RNA-seq technique is widely applied to study the global gene expression in numerous processes related to plant biology, including responses induced by abiotic stress, providing relevant information about the genes and the pathways that participate in stress-induced responses. In this study, we analyzed the differential gene expression in response to combined stress of UV-B radiation and cold after exposure at 1, 3 and 25 h in stems from C. annuum plants, to gain deeper insights about the temporal dynamic of genes and pathways modulated by these factors. We found that 281, 280 and 326 genes were differentially expressed at 1, 3 and 25 h, respectively. Functional annotation revealed that most of genes were associated with hydrolase activity, stress response, stimulus response, carbohydrate metabolic process, and biosynthetic process. Based on KEGG pathway analysis, we found that circadian rhythm-plant, flavonoids biosynthesis and MAPK signaling pathway were statistically significant in almost all the sampling times. In conclusion, we found that several genes related to defense against pathogens and cell wall expansion were down-regulated, meanwhile the up-regulated genes were related to chloroplast protection, hormone and flavonoids biosynthesis, and compound transport. © 2021 Friends Science Publishers


Author(s):  
Mengqi Ding ◽  
Kaixuan Zhang ◽  
Yuqi He ◽  
Qian Zuo ◽  
Hui Zhao ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Ying Guo ◽  
Tongli Wang ◽  
Fang-Fang Fu ◽  
Yousry A. El-Kassaby ◽  
Guibin Wang

Ginkgo (Ginkgo biloba L.) is a high-value medicinal tree species characterized by its flavonoids beneficial effects that are abundant in leaves. We performed a temporospatial comprehensive transcriptome and metabolome dynamics analyses of clonally propagated Ginkgo plants at four developmental stages (time: May to August) across three different environments (space) to unravel leaves flavonoids biosynthesis variation. Principal component analysis revealed clear gene expression separation across samples from different environments and leaf-developmental stages. We found that flavonoid-related metabolism was more active in the early stage of leaf development, and the content of total flavonoid glycosides and the expression of some genes in flavonoid biosynthesis pathway peaked in May. We also constructed a co-expression regulation network and identified eight GbMYBs and combining with other TF genes (3 GbERFs, 1 GbbHLH, and 1 GbTrihelix) positively regulated the expression of multiple structural genes in the flavonoid biosynthesis pathway. We found that part of these GbTFs (Gb_11316, Gb_32143, and Gb_00128) expressions was negatively correlated with mean minimum temperature and mean relative humidity, while positively correlated with sunshine duration. This study increased our understanding of the molecular mechanisms of flavonoids biosynthesis in Ginkgo leaves and provided insight into the proper production and management of Ginkgo commercial plantations.


Sign in / Sign up

Export Citation Format

Share Document