scholarly journals Modeling hydrocarbon generation potentials of Eocene source rocks in the Agbada Formation, Northern Delta Depobelt, Niger Delta Basin, Nigeria

2016 ◽  
Vol 7 (2) ◽  
pp. 379-388 ◽  
Author(s):  
Oladotun A. Oluwajana ◽  
Olugbenga A. Ehinola ◽  
Chukwudike G. Okeugo ◽  
Olatunji Adegoke
Author(s):  
S. L. Fadiya ◽  
S. A. Adekola ◽  
B. M. Oyebamiji ◽  
O. T. Akinsanpe

AbstractSelected shale samples within the middle Miocene Agbada Formation of Ege-1 and Ege-2 wells, Niger Delta Basin, Nigeria, were evaluated using total organic carbon content (TOC) and Rock–Eval pyrolysis examination with the aim of determining their hydrocarbon potential. The results obtained reveal TOC values varying from 1.64 to 2.77 wt% with an average value of 2.29 wt% for Ege-1 well, while Ege-2 well TOC values ranged from 1.27 to 3.28 wt% (average of 2.27 wt%) values which both fall above the minimum threshold (0.5%) for hydrocarbon generation potential in the Niger Delta. Rock–Eval pyrolysis data revealed that the shale source rock samples from Ege-1 well are characterized by Type II–Type III kerogens which are thermally mature to generate oil or gas/oil. The Ege-2 well pyrolysis result showed that some of the ditch cutting samples are comprised of Type II (oil prone) and Type III (gas-prone kerogen) which are thermally immature to marginal maturity (Tmax 346–439 °C). This study concludes that the shale intercalations between reservoir sands of the Agbada Formation are good source rocks in early maturity and also must have contributed to the vast petroleum reserve in the Niger Delta Basin because of the subsidence of the basin.


2021 ◽  
Vol 25 (8) ◽  
pp. 1361-1369
Author(s):  
S.S. Adebayo ◽  
E.O. Agbalagba ◽  
A.I. Korode ◽  
T.S. Fagbemigun ◽  
O.E. Oyanameh ◽  
...  

Seismic Structural interpretation of subsurface system is a vital tool in mapping source rocks and good trapping system which enhances good understanding of the subsurface system for productive drilling operation. This study is geared towards mapping the structural traps available within the hydrocarbon bearing zones of the “High field” with the use of well log and 3D seismic data. Seven horizons (H1, H2, H3, H4, H5, H6 and H7) were identified on well logs using gamma ray log and resistivity logs. Nine (9) faults were mapped on seismic sections across the field, two (2) of which are major growth faults (F1 and F2), two (2) synthetic faults (F3 and F7) and five (5) antithetic faults (F4, F5, F6, F8 and F9). Rollover anticlines which are structural closure and displayed on the depth structural maps suggest probable hydrocarbon accumulation at the down throw side of the fault F1. Structural interpretation of high field has revealed a highly fault assisted reservoir which depicts the tectonic setting of Niger Delta basin.


2018 ◽  
Vol 14 (27) ◽  
pp. 157 ◽  
Author(s):  
Olajubaje T. A. ◽  
Akande S.O. ◽  
Adeoye J. A. ◽  
Adekeye O. A. ◽  
Friedrich C.

This paper focuses on investigating the paleoenvironments and hydrocarbon generation potentials of the outcropping Eocene Bende-Ameki Formation at Ogbunike quarry, Anambra Basin southeastern Nigeria, which is the Niger Delta Agbada Formation subsurface equivalent. The fine to coarse sandstones interbedded with parallel laminated grey, coaly shales, and bioturbated claystones were the dominant rock facies. The shales contain Ammobaculities, Ammontium, lenticulina, and Reophax benthic foraminifera of brackish to outer shelf environments. The rock sequence and biofacies associations indicate a fluvial, shoreface to delta environments. The marine and continental paleoenvironments are supported by the concentration and association of redox-sensitive trace elements such as vanadium and nickel of oxic to dysoxic paleoconditions. The twenty shales have a range of TOC from 0.39 - 8.81 wt% (mean 2.2 2 wt%), suggesting a good to very good source rocks. The organic richness is highest within the depth of 2 – 6 m across the quarry. Their genetic potential (S1+S2) ranges from 0.22 - 27.35 (mean 2.8 kgHC/ton) of rock, and hydrogen index from 26 to 292 mgHC/gTOC with a mean of 67.3 mgHC/gTOC. This, however, indicates dominance of Type III gas prone kerogen of terrestrial origin. The oxygenated water column characterized by the presence of benthonic scavengers may not preserve lipidenriched organic constituents of anoxic paleoenvironments which could account for the rare Type II oil and gas prone kerogen in the source rock. The thermal history inferred from the Tmax between 401°C - 424°C suggests that the source rocks are immature at the present stratigraphic level.


China Geology ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 602-610
Author(s):  
Abiodun B Ogbesejana ◽  
◽  
Oluwasesan M Bello ◽  
Tijjani Ali

Author(s):  
Koffi Eugene Kouadio ◽  
Selegha Abrakasa ◽  
Sunday S. Ikiensikimama ◽  
Takyi Botwe

The geochemical analysis was performed on twelve (12) core samples from 6 wells of different formations (Akata, Agbada, and Akata/Agbada) of the onshore  Niger Delta Basin. The study was essentially based on the results of the Rock-Eval 6 Pyrolysis to evaluate organic matter abundance, quality, and thermal maturity. The Total Organic Carbon (TOC) varies between 0.6 and 3.06 wt% and the Hydrogen Index (IH) of the studied samples ranges from 38 to 202 mgHC/g TOC, indicating predominantly Type III (gas prone) and mixed type II/III (gas and oil-prone) kerogen. This suggests terrigenous and a mixture of marine and terrigenous organic matter deposited in a paralic marine setting. The organic matter is immature to early mature according to the thermal maturity parameter (414<Tmax<432). The well Isan 9 from Agbada (6760 ft) and Agbada/Akata (8680 ft) shows petroleum generation potential of fair (2,5 < S2 < 5 mg HC/g rock) to good (5 < S2 < 10 mgHC/g rock) and poor for the  other wells. The maturation of the kerogen indicates a very early stage of maturation (Tmax= 432°C). The results indicate that the shales from Agbada and the transition zone between the upper and lower parts of the Akata Shales are more shaly and perhaps the more mature part of the Agbada formation can be the potential source rocks of Niger Delta Basin.


2018 ◽  
Vol 22 (3) ◽  
pp. 356
Author(s):  
AB Ogbesejana ◽  
OM Bello ◽  
AU Uduma

2006 ◽  
Vol 51 (23) ◽  
pp. 2885-2891 ◽  
Author(s):  
Xinhua Geng ◽  
Ansong Geng ◽  
Yongqiang Xiong ◽  
Jinzhong Liu ◽  
Haizu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document