scholarly journals Enhanced aquathermolysis of extra-heavy oil by application of transition metal oxides submicro-particles in relation to steam injection processes

2021 ◽  
Vol 11 (11) ◽  
pp. 4019-4028
Author(s):  
Xian Zhang ◽  
Hongchang Che ◽  
Yongjian Liu

AbstractIn order to investigate the catalytic effects of transition metal oxides submicro-particles on aquathermolysis of Liaohe extra-heavy crude oil, the catalysts NiO, α·Fe2O3 and Co3O4 are used and evaluated during the experiments. The optimum mass fraction of the catalyst and water was determined to be 5.0 wt% and 30 wt%, respectively. The optimum reaction time for aquathermolysis was 24 h, and the optimum reaction temperature was 240 °C. The analysis results showed the heavy oil was upgraded dramatically by addition of the catalysts based upon viscosity reduction, saturate/aromatics/resins/asphaltenes analyses, elemental analysis, Fourier transform infrared spectroscopy and gas chromatography. All results show the heavy oil is in situ updated dramatically by catalytic aquathermolysis under the optimum operating conditions. A five-lump model is proposed for estimating kinetic parameters of aquathermolysis and agrees well with the experimental data.

1991 ◽  
Vol 250 ◽  
Author(s):  
J. Collins ◽  
D. E. Rosner ◽  
J. Castillo

AbstractA combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No “vapor phase ignition” has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw=1700 K) and further experiments are planned using more reactive feed materials. The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.


2019 ◽  
Author(s):  
Dominik Wrana ◽  
Karol Cieślik ◽  
Wojciech Bełza ◽  
Christian Rodenbücher ◽  
Krzysztof Szot ◽  
...  

Controlling the work function of transition metal oxides is of key importance towards future energy production and storage. As majority of applications comprise the use of heterostructures, the most suitable experimental technique is Kelvin Probe Force Microscopy, providing excellent energetic and lateral resolution. In this paper we demonstrate the possibility of the precise work function characterization using the example of artificially formed crystalline titanium monoxide TiO nanowires on strontium titanate SrTiO3 surfaces providing a sharp atomic interface. The measured value of 3.31(21) eV is the first experimental work function evidence for a cubic TiO phase, being additionally subjected to significant variations among different crystallographic facets. Despite the remarkable height of the formed TiO nanowires, FM-KPFM proved to be able to achieve high lateral resolution of 15 nm, which is close to the topographical limits. In this study we show also the unique possibility of obtaining conductivity and work function maps on the same area, by combining contact and non-contact atomic force microscopy. As most of real applications require ambient operating conditions, we have additionally checked the impact of air venting on the work function of the TiO/SrTiO3(100) heterostructure, proving the surface re-oxidation occurs and results in  work function increases of 0.9 eV and 0.6 eV for SrTiO3 and TiO, respectively. In addition, the influence of physisorbed species was estimated to contribute 0.4 eV and 0.2 eV to the work function of both structures. The presented method of the KPFM (and LC-AFM) employment for the work function characterization of transition metal oxides may help to understand the reduction and oxidation impact on electronic properties, which is of high importance towards the development of effective sensing and catalytic devices.


Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
L. D. Marks

It has been known for a long time that electron irradiation induces damage in maximal valence transition metal oxides such as TiO2, V2O5, and WO3, of which transition metal ions have an empty d-shell. This type of damage is excited by electronic transition and can be explained by the Knoteck-Feibelman mechanism (K-F mechanism). Although the K-F mechanism predicts that no damage should occur in transition metal oxides of which the transition metal ions have a partially filled d-shell, namely submaximal valence transition metal oxides, our recent study on ReO3 shows that submaximal valence transition metal oxides undergo damage during electron irradiation.ReO3 has a nearly cubic structure and contains a single unit in its cell: a = 3.73 Å, and α = 89°34'. TEM specimens were prepared by depositing dry powders onto a holey carbon film supported on a copper grid. Specimens were examined in Hitachi H-9000 and UHV H-9000 electron microscopes both operated at 300 keV accelerating voltage. The electron beam flux was maintained at about 10 A/cm2 during the observation.


Author(s):  
Michel Fialin ◽  
Guy Rémond

Oxygen-bearing minerals are generally strong insulators (e.g. silicates), or if not (e.g. transition metal oxides), they are included within a rock matrix which electrically isolates them from the sample holder contacts. In this respect, a thin carbon layer (150 Å in our laboratory) is evaporated on the sections in order to restore the conductivity. For silicates, overestimated oxygen concentrations are usually noted when transition metal oxides are used as standards. These trends corroborate the results of Bastin and Heijligers on MgO, Al2O3 and SiO2. According to our experiments, these errors are independent of the accelerating voltage used (fig.l).Owing to the low density of preexisting defects within the Al2O3 single-crystal, no significant charge buildup occurs under irradiation at low accelerating voltage (< 10keV). As a consequence, neither beam instabilities, due to electrical discharges within the excited volume, nor losses of energy for beam electrons before striking the sample, due to the presence of the electrostatic charge-induced potential, are noted : measurements from both coated and uncoated samples give comparable results which demonstrates that the carbon coating is not the cause of the observed errors.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 256
Author(s):  
Christian Rodenbücher ◽  
Kristof Szot

Transition metal oxides with ABO3 or BO2 structures have become one of the major research fields in solid state science, as they exhibit an impressive variety of unusual and exotic phenomena with potential for their exploitation in real-world applications [...]


2021 ◽  
Vol 36 ◽  
pp. 514-550
Author(s):  
Zhihao Lei ◽  
Jang Mee Lee ◽  
Gurwinder Singh ◽  
C.I. Sathish ◽  
Xueze Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document