Synthesis of an electrospun PHA/RGO/Au scaffold for peripheral nerve regeneration: an in vitro study

2019 ◽  
Vol 10 (3) ◽  
pp. 687-694 ◽  
Author(s):  
Qiang Liu ◽  
Gaojie Liu ◽  
Xiangqin Liu ◽  
Man Yang ◽  
Shengyong Xing ◽  
...  
2013 ◽  
Vol 41 (04) ◽  
pp. 865-885 ◽  
Author(s):  
Sheng-Chi Lee ◽  
Chin-Chuan Tsai ◽  
Chun-Hsu Yao ◽  
Yuan-Man Hsu ◽  
Yueh-Sheng Chen ◽  
...  

The present study provides in vitro and in vivo evaluation of arecoline on peripheral nerve regeneration. In the in vitro study, we found that arecoline at 50 μg/ml could significantly promote the survival and outgrowth of cultured Schwann cells as compared to the controls treated with culture medium only. In the in vivo study, we evaluated peripheral nerve regeneration across a 10-mm gap in the sciatic nerve of the rat, using a silicone rubber nerve chamber filled with the arecoline solution. In the control group, the chambers were filled with normal saline only. At the end of the fourth week, morphometric data revealed that the arecoline-treated group at 5 μg/ml significantly increased the number and the density of myelinated axons as compared to the controls. Immunohistochemical staining in the arecoline-treated animals at 5 μg/ml also showed their neural cells in the L4 and L5 dorsal root ganglia ipsilateral to the injury were strongly retrograde-labeled with fluorogold and lamina I–II regions in the dorsal horn ipsilateral to the injury were significantly calcitonin gene-related peptide-immunolabeled compared with the controls. In addition, we found that the number of macrophages recruited in the distal sciatic nerve was increased as the concentration of arecoline was increased. Electrophysiological measurements showed the arecoline-treated groups at 5 and 50 μg/ml had a relatively larger nerve conductive velocity of the evoked muscle action potentials compared to the controls. These results indicate that arecoline could stimulate local inflammatory conditions, improving the recovery of a severe peripheral nerve injury.


2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Eroboghene Ubogu

AbstractCurrent therapies for immune-mediated inflammatory disorders in peripheral nerves are non-specific, and partly efficacious. Peripheral nerve regeneration following axonal degeneration or injury is suboptimal, with current therapies focused on modulating the underlying etiology and treating the consequences, such as neuropathic pain and weakness. Despite significant advances in understanding mechanisms of peripheral nerve inflammation, as well as axonal degeneration and regeneration, there has been limited translation into effective new drugs for these disorders. A major limitation in the field has been the unavailability of reliable disease models or research tools that mimic some key essential features of these human conditions. A relatively overlooked aspect of peripheral nerve regeneration has been neurovascular repair required to restore the homeostatic microenvironment necessary for normal function. Using Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) as examples of human acute and chronic immune-mediated peripheral neuroinflammatory disorders respectively, we have performed detailed studies in representative mouse models to demonstrate essential features of the human disorders. These models are important tools to develop and test treatment strategies using realistic outcomes measures applicable to affected patients. In vitro models of the human blood-nerve barrier using endothelial cells derived by endoneurial microvessels provide insights into pro-inflammatory leukocyte-endothelial cell interactions relevant to peripheral neuroinflammation, as well as potential mediators and signaling pathways required for vascular proliferation, angiogenesis, remodeling and tight junction specialization necessary to restore peripheral nerve function following injury. This review discusses some of the progress being made in translational peripheral neurobiology and some future


2010 ◽  
Vol 38 (03) ◽  
pp. 547-560 ◽  
Author(s):  
Chao-Tsung Chen ◽  
Jaung-Geng Lin ◽  
Tung-Wu Lu ◽  
Fuu-Jen Tsai ◽  
Chih-Yang Huang ◽  
...  

The present study provides in vitro and in vivo evaluations of earthworm (Pheretima aspergilum) on peripheral nerve regeneration. In the in vitro study, we found the earthworm (EW) water extracts caused a marked enhancement of the nerve growth factor-mediated neurite outgrowth from PC12 cells as well as the expressions of growth associated protein 43 and synapsin I. In the in vivo study, silicone rubber chambers filled with EW extracts were used to bridge a 10 mm sciatic nerve defect in rats. Eight weeks after implantation, the group receiving EW extracts had a much higher success percentage of regeneration (90%) compared to the control (60%) receiving the saline. In addition, quantitative histology of the successfully regenerated nerves revealed that myelinated axons in EW group at 31.25 μg/ml was significantly more than those in the controls (p < 0.05). These results showed that EW extracts can be a potential growth-promoting factor on regenerating peripheral nerves.


Neurosurgery ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. E272-E272
Author(s):  
Devyani Shete ◽  
Aran Batth ◽  
Aditi Nijhawan ◽  
Jaffer Choudhary ◽  
Ian Thompson

Abstract INTRODUCTION Peripheral nerve regeneration is a complex challenge that requires suitable nerve guidance systems to bridge the severed ends of 2 nerves back together. Current polymeric conduits on the market provide good cellular growth but are limited by the length of gap defect they can repair, and complete functional recovery is rare. This project focused on creating a three-dimensional (3D) in Vitro spheroidal sprouting assay for peripheral nerve regeneration, as well as producing and testing different polymeric hydrogels as potential scaffold materials for the conduit. METHODS Different concentrations of chitosan, methylcellulose (MC) and sodium alginate were produced, as well as blends of these materials. These hydrogels were seeded with 3D neurospheroids, along with NG108-15 (neuronal) cells and Schwann cells to test their biocompatibility. RESULTS MTT assays showed the mean absorbance of chitosan gels with NG108-15 cells at 24 hr (P < .001) and 72 hr (P > .05) was similar/slightly higher than the negative control. Live-Dead data showed 93.4% of live cells at DIV7 on MC: Ch blends, compared to 72% with chitosan alone. CONCLUSION Overall, both chitosan and MC were nontoxic and biocompatible with NG108-15 and Schwann cells. Blending chitosan with MC improved its chemical and physical properties. The cells formed spheroids that well on a gel; this pseudo-3D structure is excellent for research purposes compared to 2D as it mimics the body's internal environment.


Sign in / Sign up

Export Citation Format

Share Document