Producing Neurospheroids and Hydrogels to Create a Three-dimensional in Vitro Model for the Use of Conduits in Peripheral Nerve Regeneration

Neurosurgery ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. E272-E272
Author(s):  
Devyani Shete ◽  
Aran Batth ◽  
Aditi Nijhawan ◽  
Jaffer Choudhary ◽  
Ian Thompson

Abstract INTRODUCTION Peripheral nerve regeneration is a complex challenge that requires suitable nerve guidance systems to bridge the severed ends of 2 nerves back together. Current polymeric conduits on the market provide good cellular growth but are limited by the length of gap defect they can repair, and complete functional recovery is rare. This project focused on creating a three-dimensional (3D) in Vitro spheroidal sprouting assay for peripheral nerve regeneration, as well as producing and testing different polymeric hydrogels as potential scaffold materials for the conduit. METHODS Different concentrations of chitosan, methylcellulose (MC) and sodium alginate were produced, as well as blends of these materials. These hydrogels were seeded with 3D neurospheroids, along with NG108-15 (neuronal) cells and Schwann cells to test their biocompatibility. RESULTS MTT assays showed the mean absorbance of chitosan gels with NG108-15 cells at 24 hr (P < .001) and 72 hr (P > .05) was similar/slightly higher than the negative control. Live-Dead data showed 93.4% of live cells at DIV7 on MC: Ch blends, compared to 72% with chitosan alone. CONCLUSION Overall, both chitosan and MC were nontoxic and biocompatible with NG108-15 and Schwann cells. Blending chitosan with MC improved its chemical and physical properties. The cells formed spheroids that well on a gel; this pseudo-3D structure is excellent for research purposes compared to 2D as it mimics the body's internal environment.

2014 ◽  
Vol 14 (8) ◽  
pp. 1067-1075 ◽  
Author(s):  
Guicai Li ◽  
Xueying Zhao ◽  
Luzhong Zhang ◽  
Caiping Wang ◽  
Yunwei Shi ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hui Liu ◽  
Peizhen Lv ◽  
Yongjia Zhu ◽  
Huayu Wu ◽  
Kun Zhang ◽  
...  

Abstract Salidriside (SDS), a phenylpropanoid glycoside derived from Rhodiola rosea L, has been shown to be neuroprotective in many studies, which may be promising in nerve recovery. In this study, the neuroprotective effects of SDS on engineered nerve constructed by Schwann cells (SCs) and Poly (lactic-co-glycolic acid) (PLGA) were studied in vitro. We further investigated the effect of combinational therapy of SDS and PLGA/SCs based tissue engineering on peripheral nerve regeneration based on the rat model of nerve injury by sciatic transection. The results showed that SDS dramatically enhanced the proliferation and function of SCs. The underlying mechanism may be that SDS affects SCs growth through the modulation of neurotrophic factors (BDNF, GDNF and CNTF). 12 weeks after implantation with a 12 mm gap of sciatic nerve injury, SDS-PLGA/SCs achieved satisfying outcomes of nerve regeneration, as evidenced by morphological and functional improvements upon therapy by SDS, PLGA/SCs or direct suture group assessed by sciatic function index, nerve conduction assay, HE staining and immunohistochemical analysis. Our results demonstrated the significant role of introducing SDS into neural tissue engineering to promote nerve regeneration.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hui Liu ◽  
Peizhen Lv ◽  
Yongjia Zhu ◽  
Huayu Wu ◽  
Kun Zhang ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Author(s):  
Yu-Jie Lin ◽  
Yun-Wei Lee ◽  
Che-Wei Chang ◽  
Chieh-Cheng Huang

Schwann cells (SCs) are promising candidates for cell therapy due to their ability to promote peripheral nerve regeneration. However, SC-based therapies are hindered by the lack of a clinically renewable source of SCs. In this study, using a well-defined non-genetic approach, umbilical cord blood mesenchymal stem cells (cbMSCs), a clinically applicable cell type, were phenotypically, epigenetically, and functionally converted into SC-like cells (SCLCs) that stimulated effective sprouting of neuritic processes from neuronal cells. To further enhance their therapeutic capability, the cbMSC-derived SCLCs were assembled into three-dimensional (3D) cell spheroids by using a methylcellulose hydrogel system. The cell–cell and cell–extracellular matrix interactions were well-preserved within the formed 3D SCLC spheroids, and marked increases in neurotrophic, proangiogenic and anti-apoptotic factors were detected compared with cells that were harvested using conventional trypsin-based methods, demonstrating the superior advantage of SCLCs assembled into 3D spheroids. Transplantation of 3D SCLC spheroids into crush-injured rat sciatic nerves effectively promoted the recovery of motor function and enhanced nerve structure regeneration. In summary, by simply assembling cells into a 3D-spheroid conformation, the therapeutic potential of SCLCs derived from clinically available cbMSCs for promoting nerve regeneration was enhanced significantly. Thus, these cells hold great potential for translation to clinical applications for treating peripheral nerve injury.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiangyun Yao ◽  
Zhiwen Yan ◽  
Xiaojing Li ◽  
Yanhao Li ◽  
Yuanming Ouyang ◽  
...  

Peripheral nerve injuries (PNIs) are frequent traumatic injuries across the globe. Severe PNIs result in irreversible loss of axons and myelin sheaths and disability of motor and sensory function. Schwann cells can secrete neurotrophic factors and myelinate the injured axons to repair PNIs. However, Schwann cells are hard to harvest and expand in vitro, which limit their clinical use. Adipose-derived stem cells (ADSCs) are easily accessible and have the potential to acquire neurotrophic phenotype under the induction of an established protocol. It has been noticed that Tacrolimus/FK506 promotes peripheral nerve regeneration, despite the mechanism of its pro-neurogenic capacity remains undefined. Herein, we investigated the neurotrophic capacity of ADSCs under the stimulation of tacrolimus. ADSCs were cultured in the induction medium for 18 days to differentiate along the glial lineage and were subjected to FK506 stimulation for the last 3 days. We discovered that FK506 greatly enhanced the neurotrophic phenotype of ADSCs which potentiated the nerve regeneration in a crush injury model. This work explored the novel application of FK506 synergized with ADSCs and thus shed promising light on the treatment of severe PNIs.


Glia ◽  
2001 ◽  
Vol 34 (1) ◽  
pp. 8-17 ◽  
Author(s):  
Afshin Mosahebi ◽  
Barbara Woodward ◽  
Mikael Wiberg ◽  
Robin Martin ◽  
Giorgio Terenghi

2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Eroboghene Ubogu

AbstractCurrent therapies for immune-mediated inflammatory disorders in peripheral nerves are non-specific, and partly efficacious. Peripheral nerve regeneration following axonal degeneration or injury is suboptimal, with current therapies focused on modulating the underlying etiology and treating the consequences, such as neuropathic pain and weakness. Despite significant advances in understanding mechanisms of peripheral nerve inflammation, as well as axonal degeneration and regeneration, there has been limited translation into effective new drugs for these disorders. A major limitation in the field has been the unavailability of reliable disease models or research tools that mimic some key essential features of these human conditions. A relatively overlooked aspect of peripheral nerve regeneration has been neurovascular repair required to restore the homeostatic microenvironment necessary for normal function. Using Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) as examples of human acute and chronic immune-mediated peripheral neuroinflammatory disorders respectively, we have performed detailed studies in representative mouse models to demonstrate essential features of the human disorders. These models are important tools to develop and test treatment strategies using realistic outcomes measures applicable to affected patients. In vitro models of the human blood-nerve barrier using endothelial cells derived by endoneurial microvessels provide insights into pro-inflammatory leukocyte-endothelial cell interactions relevant to peripheral neuroinflammation, as well as potential mediators and signaling pathways required for vascular proliferation, angiogenesis, remodeling and tight junction specialization necessary to restore peripheral nerve function following injury. This review discusses some of the progress being made in translational peripheral neurobiology and some future


2008 ◽  
Vol 23 (4) ◽  
pp. 364-371 ◽  
Author(s):  
Camila Maria Beder Ribeiro ◽  
Belmiro Cavalcanti do Egito Vasconcelos ◽  
Joaquim Celestino da Silva Neto ◽  
Valdemiro Amaro da Silva Júnior ◽  
Nancy Gurgel Figueiredo

PURPOSE: To analyze the action of gangliosides in peripheral nerve regeneration in the sciatic nerve of the rat. METHODS: The sample was composed of 96 male Wistar rats. The animals were anaesthetized and, after identification of the anaesthesic plane, an incision was made in the posterior region of the thigh, followed by skin and muscle divulsion. The right sciatic nerve was isolated and compressed for 2 minutes. Continuous suture of the skin was performed. The animals were randomly divided into two groups: the experimental group (EG), which received subcutaneous injection of gangliosides, and the control group (CG), which received saline solution (0.9%) to mimic the effects of drug administration. RESULTS: No differences were observed between the experimental and control groups evaluated on the eighth day of observation. At 15 and 30 days the EG showed an decrease in Schwann cell activity and an apparent improvement in fibre organization; at 60 days, there was a slight presence of Schwann cells in the endoneural space and the fibres were organized, indicating nerve regeneration. At 15 and 30 days, the level of cell reaction in the CG had diminished, but there were many cells with cytoplasm in activity and in mitosis; at 60 days, hyperplastic Schwann cells and mitotic activity were again observed, as well as nerve regeneration, but to a lesser extent than in the EG. CONCLUSION: The administration of exogenous gangliosides seems to improve nerve regeneration.


Sign in / Sign up

Export Citation Format

Share Document