Effect of Dry Matter Concentration on Dry Anaerobic Digestion of Animal Manure and Straw

2012 ◽  
Vol 253-255 ◽  
pp. 897-902
Author(s):  
Li Jun Shi ◽  
Miao Huang ◽  
Wei Yu Zhang ◽  
Hui Fen Liu

In this paper anaerobic digestion of dairy manure and straw was conducted to produce biogas. Under the conditions of C/N=25-30 and T=36°C, five kinds of dry matter concentration of 20%, 15%, 10%, 5% and 2.5% were tested to investigate the effect of dry matter concentration on anaerobic digestion. The result showed that first 30 days was the biogas production peak phase and VFA concentrations in the leachate were also high during the same period. When dry matter concentration increased, biogas production appeared larger fluctuation, and alkalinity and NH4+-N concentration in the leachate also increased with higher organic loading rate. Among five kinds of dry matter concentration, 10% was more suitable for anaerobic digestion to produce biogas with total biogas production amount of 4710 mL after 30 days and volumetric biogas yield of 0.313 m3•m-3•d-1. These results could provide instructive meaning to the engineering application of dry anaerobic digestion.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2392 ◽  
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Marta Kisielewska ◽  
Joanna Kazimierowicz

The aim of this study was the performance evaluation of anaerobic digestion of dairy wastewater in a multi-section horizontal flow reactor (HFAR) equipped with microwave and ultrasonic generators to stimulate biochemical processes. The effects of increasing organic loading rate (OLR) ranging from 1.0 g chemical oxygen demand (COD)/L·d to 4.0 g COD/L·d on treatment performance, biogas production, and percentage of methane yield were determined. The highest organic compounds removals (about 85% as COD and total organic carbon—TOC) were obtained at OLR of 1.0–2.0 g COD/L·d. The highest biogas yield of 0.33 ± 0.03 L/g COD removed and methane content in biogas of 68.1 ± 5.8% were recorded at OLR of 1.0 g COD/L·d, while at OLR of 2.0 g COD/L·d it was 0.31 ± 0.02 L/COD removed and 66.3 ± 5.7%, respectively. Increasing of the OLR led to a reduction in biogas productivity as well as a decrease in methane content in biogas. The best technological effects were recorded in series with an operating mode of ultrasonic generators of 2 min work/28 min break. More intensive sonication reduced the efficiency of anaerobic digestion of dairy wastewater as well as biogas production. A low nutrient removal efficiency was observed in all tested series of the experiment, which ranged from 2.04 ± 0.38 to 4.59 ± 0.68% for phosphorus and from 9.67 ± 3.36 to 20.36 ± 0.32% for nitrogen. The effects obtained in the study (referring to the efficiency of wastewater treatment, biogas production, as well as to the results of economic analysis) proved that the HFAR can be competitive to existing industrial technologies for food wastewater treatment.


2018 ◽  
Vol 65 ◽  
pp. 05025 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Biplob Kumar Pramanik ◽  
Shahrom Bindi Md Zain

Solid organic wastes create potential risks to environmental pollution and human health due to the uncontrolled discharge of huge quantities of hazardous wastes from numerous sources. Now-a-days, anaerobic digestion (AD) is considered as a verified and effective alternative compared to other techniques for treating solid organic waste. The paper reviewed the biological process and parameters involved in the AD along with the factors could enhance the AD process. Hydrolysis is considered as a rate-limiting phase in the complex AD process. The performance and stability of AD process is highly influenced by various operating parameters like temperature, pH, carbon and nitrogen ratio, retention time, and organic loading rate. Different pre-treatment (e.g. mechanical, chemical and biological) could enhance the AD process and the biogas yield. Co-digestion can also be used to provide suitable nutrient balance inside the digester. Challenges of the anaerobic digestion for biogas production are also discussed.


2011 ◽  
Vol 29 (11) ◽  
pp. 1171-1176 ◽  
Author(s):  
Thomas Schmidt

Oil production from Jatropha curcas L. seeds generates large amounts of Jatropha press cake (JPC) which can be utilized as a substrate for biogas production. The objective of this work was to investigate anaerobic mono-digestion of JPC and the effects of an iron additive (IA) on gas quality and process stability during the increase of the organic loading rate (OLR). With the increase of the OLR from 1.3 to 3.2 gVS L−1 day−1, the biogas yield in the reference reactor (RR) without IA decreased from 512 to 194 LN kgVS−1 and the CH4 concentration decreased from 69.3 to 44.4%. In the iron additive reactor (IAR), the biogas yield decreased from 530 to 462 LN kgVS−1 and the CH4 concentration decreased from 69.4 to 61.1%. The H2S concentration in the biogas was reduced by addition of the IA to values below 258 ppm in the IAR while H2S concentration in the RR increased and exceeded the detection limit of 5000 ppm. The acid capacity (AC) in the RR increased to more than 20 g L−1, indicating an accumulation of organic acids caused by process instability. AC values in the IAR remained stable at values below 5 g L−1. The results demonstrate that JPC can be used as sole substrate for anaerobic digestion up to an OLR of 2.4 gVS l−1 day−1. The addition of IA has effectively decreased the H2S content in the biogas and has improved the stability of the anaerobic process and the biogas quality.


2010 ◽  
Vol 113-116 ◽  
pp. 740-743 ◽  
Author(s):  
Jha Ajay Kumar ◽  
Jian Zheng Li ◽  
Jun Guo He ◽  
Sheng Chang ◽  
A.K. Jha

Dry methane fermentation is an innovative anaerobic digestion technique to treat solid bio-wastes without dilution for potential energy recovery with nutrient rich fertilizer and sustainable waste management. Although dry anaerobic fermentation offers great advantages like utilization of wastes in its produced form, high organic loading rate, no liquid effluent and comparable amount of biogas production with wet fermentation, commercial dry anaerobic digestion is scarcely used so far. In order to develop feasible dry fermentation process, it is important to review the optimization techniques and suggested possible areas where improvements could be made, including the reactor configuration, mixing, feed stocks, co-digestion, pretreatment and environmental conditions within the digester.


2018 ◽  
Vol 10 (12) ◽  
pp. 4588 ◽  
Author(s):  
Yanran Fu ◽  
Tao Luo ◽  
Zili Mei ◽  
Jiang Li ◽  
Kun Qiu ◽  
...  

Dry anaerobic digestion technology (DADT) is considered a highly feasible way to treat agricultural straw waste; however, most practical operations are always in low efficiency, due to the poor fluidity behavior and complex lignocellulosic structure of straw, which is not easily decomposed by anaerobic bacteria. Hence, it is necessary to further investigate the operation boundary, in order to increase biogas production efficiency for effective applications. In this paper, typical DADTs are reviewed and their suitability for application in China is analyzed. The advantages and disadvantages of different anaerobic digestion processes are evaluated considering pretreatment, organic loading rate, anaerobic digestion temperature, and homogenization of the feedstock and inoculate. The suitability of the DADTs is evaluated considering the accessibility of straw resources and the convenience of biogas use. It is concluded that batch anaerobic digestion processes would be more suitable for the development of southern China due to the prevalence of small-scale agriculture, while continuous anaerobic digestion would be preferable in the north where large-scale agriculture is common. However, the DADTs discussed here need to broad application in China.


2021 ◽  
Vol 11 (10) ◽  
pp. 4452
Author(s):  
Pranshu Bhatia ◽  
Masaaki Fujiwara ◽  
Maria Cecilia D. Salangsang ◽  
Jun Qian ◽  
Xin Liu ◽  
...  

In this study, semi-continuous anaerobic digestion of lignin-rich steam-exploded Ludwigia grandiflora (Lignin = 25.22% ± 4.6% total solids) was performed to understand better the effect of steam explosion on the substrate solubilisation and inhibitors formation during the process. Steam explosion pretreatment was performed at 180 °C for 30 min at a severity factor of 3.8 to enhance the biogas yield of the lignocellulosic biomass. The semi-continuous anaerobic digestion was performed in a continuously stirred tank reactor for 98 days at an initial hydraulic retention time of 30 days and an organic loading rate of 0.9 g-VS L−1day−1. The performed steam explosion pretreatment caused biomass solubilisation, resulting in enhanced biogas production during the process. During the anaerobic digestion process, the average biogas yield was 265 mL g-VS−1, and the pH throughout the operation was in the optimum range of 6.5–8.2. Due to fluctuations in the biogas yield, the hydraulic retention time and organic loading rate were changed on day 42 (50 days and 0.5 g-VS L−1day−1) and on day 49 (40 days and 0.7 g-VS L−1day−1), and 1 M of NaOH was added to the liquid fraction of the steam-exploded L. grandiflora during the latter part of the operation to maintain the stability in the reactor. Therefore, the steam explosion pretreatment helped in the degradation of L. grandiflora by breaking the lignocellulose structure. In addition, changes in the operating conditions of the anaerobic digestion led to an increase in the biogas production towards the end of the process, leading to the stability in the CSTR.


2019 ◽  
Vol 9 (9) ◽  
pp. 1915 ◽  
Author(s):  
Shiplu Sarker ◽  
Jacob J. Lamb ◽  
Dag R. Hjelme ◽  
Kristian M. Lien

Many operating parameters, individually or together, may influence the performance of anaerobic digestion towards biogas or digestate yield and quality maximization. The most preferred method of optimizing an anaerobic digestion plant often relies on how carefully the crucial parameters, such as pH, temperature, organic loading rate, hydraulic retention time, and pressure, are chosen. There is a large amount of literature available on optimization of anaerobic digestion; however, given the continued development and implementation of innovative technologies, together with the introduction of increasingly complex systems, it is necessary to update present knowledge on process parameters and their role on operational ranges and flexibilities in real-life anaerobic digestion system. Accordingly, the present review discusses the importance of the selection of operational parameters in existing technologies and their impact on biogas yield. Notably, the four broad areas of feedstock utilization (substrate, inoculum, codigestion and pretreatment), process condition (pH, temperature, pressure, and reactor design), reactor control (HRT and OLR) and inhibition (Ammonia and VFAs) are covered in this review. In addition, particular emphasis is placed on the most recent innovations that have been or may be implemented in current or future biogas plants.


2015 ◽  
Vol 73 (2) ◽  
pp. 355-361 ◽  
Author(s):  
M. A. Hernández-Shek ◽  
L. S. Cadavid-Rodríguez ◽  
I. V. Bolaños ◽  
A. C. Agudelo-Henao

The potential to recover bioenergy from anaerobic digestion of water hyacinth (WH) and from its co-digestion with fruit and vegetable waste (FVW) was investigated. Initially, biogas and methane production were studied using the biochemical methane potential (BMP) test at 2 g volatile solids (VS) L−1 of substrate concentration, both in the digestion of WH alone and in its co-digestion with FVW (WH-FVW ratio of 70:30). Subsequently, the biogas production was optimized in terms of total solids (TS) concentration, testing 4 and 6% of TS. The BMP test showed a biogas yield of 0.114 m3 biogas kg−1 VSadded for WH alone. On the other hand, the biogas potential from the WH-FVW co-digestion was 0.141 m3 biogas kg−1 VSadded, showing an increase of 23% compared to that of WH alone. Maximum biogas production of 0.230 m3 biogas kg−1 VSadded was obtained at 4% of TS in the co-digestion of WH-FVW. Using semi-continuously stirred tank reactors, 1.3 m3 biogas yield kg−1 VSadded was produced using an organic loading rate of 2 kg VS m−3 d−1 and hydraulic retention time of 15 days. It was also found that a WH-FVW ratio of 80:20 improved the process in terms of pH stability. Additionally, it was found that nitrogen can be recovered in the liquid effluent with a potential for use as a liquid fertilizer.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


Sign in / Sign up

Export Citation Format

Share Document