scholarly journals Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony (Paeonia lactiflora Pall.)

3 Biotech ◽  
2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Yuhan Tang ◽  
Ziwen Fang ◽  
Mi Liu ◽  
Daqiu Zhao ◽  
Jun Tao
HortScience ◽  
2004 ◽  
Vol 39 (2) ◽  
pp. 328-332 ◽  
Author(s):  
Eakhlas U. Ahmed ◽  
Takahiro Hayashi ◽  
Susumu Yazawa

The developmental pattern of leaf color distribution during plant development in 10 cultivars of Caladium ×hortulanum Birdsey was investigated. We used the color occupying the largest area in the terminal leaf as the dominant color, and expressed the leaf color stability during plant development by the ratio of the percentage of the dominant color area in the terminal leaf to that of the dominant color area in the initial leaf (leaf color stability index). In some cultivars, leaf color stability index was clearly greater than 1 (leaf-color-unstable cultivar), but in some cultivars it was close to 1 (leaf-color-stable cultivar). In plants regenerated from leaf explants of leaf-color-unstable cultivars, many (21% to 43%) color variants were observed but only a few (0% to 6%) occurred from leaf explants of leaf-color-stable cultivars. Tissue culture appears to be a useful technique for rapid propagation based on leaf color stability in leaf-color-stable and leaf-color-unstable cultivars.


2015 ◽  
Vol 14 (4) ◽  
pp. 11827-11840 ◽  
Author(s):  
H.Y. Yang ◽  
X.W. Xia ◽  
W. Fang ◽  
Y. Fu ◽  
M.M. An ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mingyue Fu ◽  
Zhongcheng Zhou ◽  
Xu Yang ◽  
Zhongbing Liu ◽  
Jiarui Zheng ◽  
...  

Abstract Background Leaf color variation is a common trait in plants and widely distributed in many plants. In this study, a leaf color mutation in Camellia japonica (cultivar named as Maguxianzi, M) was used as material, and the mechanism of leaf color variation was revealed by physiological, cytological, transcriptome and microbiome analyses. Results The yellowing C. japonica (M) exhibits lower pigment content than its parent (cultivar named as Huafurong, H), especially chlorophyll (Chl) and carotenoid, and leaves of M have weaker photosynthesis. Subsequently, the results of transmission electron microscopy(TEM) exhibited that M chloroplast was accompanied by broken thylakoid membrane, degraded thylakoid grana, and filled with many vesicles. Furthermore, comparative transcriptome sequencing identified 3,298 differentially expressed genes (DEGs). KEGG annotation analysis results showed that 69 significantly enriched DEGs were involved in Chl biosynthesis, carotenoid biosynthesis, photosynthesis, and plant-pathogen interaction. On this basis, we sequenced the microbial diversity of the H and M leaves. The sequencing results suggested that the abundance of Didymella in the M leaves was significantly higher than that in the H leaves, which meant that M leaves might be infected by Didymella. Conclusions Therefore, we speculated that Didymella infected M leaves while reduced Chl and carotenoid content by damaging chloroplast structures, and altered the intensity of photosynthesis, thereby causing the leaf yellowing phenomenon of C. japonica (M). This research will provide new insights into the leaf color variation mechanism and lay a theoretical foundation for plant breeding and molecular markers.


PROTOPLASMA ◽  
2018 ◽  
Vol 255 (4) ◽  
pp. 1001-1013 ◽  
Author(s):  
Daqiu Zhao ◽  
Menglin Cheng ◽  
Wenhui Tang ◽  
Ding Liu ◽  
Siyu Zhou ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8382
Author(s):  
Runlong Zhang ◽  
Xiaobin Wang ◽  
Xiaohua Shi ◽  
Lingmei Shao ◽  
Tong Xu ◽  
...  

The introduction of herbaceous peony (Paeonia lactiflora Pall.) in low-latitude areas is of great significance to expand the landscape application of this world-famous ornamental. With the hazards of climate warming, warm winters occurs frequently, which makes many excellent northern herbaceous peony cultivars unable to meet their chilling requirements (CR) and leads to their poor growth and flowering in southern China. Exploring the endodormancy release mechanism of underground buds is crucial for improving low-CR cultivar screening and breeding. A systematic study was conducted on P. lactiflora ‘Meiju’, a screened cultivar with a typical low-CR trait introduced from northern China, at the morphological, physiological and molecular levels. The CR value of ‘Meiju’ was further verified as 677.5 CUs based on the UT model and morphological observation. As a kind of signal transducer, reactive oxygen species (ROS) released a signal to enter dormancy, which led to corresponding changes in carbohydrate and hormone metabolism in buds, thus promoting underground buds to acquire strong cold resistance and enter endodormancy. The expression of important genes related to ABA metabolism, such as NCED3, PP2C, CBF4 and ABF2, reached peaks at the critical stage of endodormancy release (9 January) and then decreased rapidly; the expression of the GA2ox8 gene related to GA synthesis increased significantly in the early stage of endodormancy release and decreased rapidly after the release of ecodormancy (23 January). Cytological observation showed that the period when the sugar and starch contents decreased and the ABA/GA ratio decreased was when ‘Meiju’ bud endodormancy was released. This study reveals the endodormancy regulation mechanism of ‘Meiju’ buds with the low-CR trait, which lays a theoretical foundation for breeding new herbaceous peony cultivars with the low-CR trait.


Sign in / Sign up

Export Citation Format

Share Document