Profiling multi-enzyme activities of Aspergillus niger strains growing on various agro-industrial residues

3 Biotech ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thanaporn Laothanachareon ◽  
Benjarat Bunterngsook ◽  
Verawat Champreda
Author(s):  
Fernanda de Oliveira ◽  
Tereza Cristina Luque Castellane ◽  
Marcelo Rodrigues de Melo ◽  
João Batista Buzato

2021 ◽  
Author(s):  
Fernanda de Oliveira ◽  
Tereza Cristina Luque Castellane ◽  
Marcelo Rodrigues de Melo ◽  
João Batista Buzato

Abstract Naringin (4,5,7-trihydroxy flavanone-7-rhamnoglucoside), considered as the main bitter component of grapefruit, requires the use of enzymes to reduce the level of this substance during juice processing. For this reason, it has been the focus of many studies. To increase the production of naringinase by Aspergillus niger cultivated in solid-state fermentation (SSF), it was verified whether the influence of agro-industrial residues as fermentation substrates and, finally, selected the best of the three inducers, or their mixtures to remove the bitterness of grapefruit juice. Cultivation with 2.3 g of grapefruit peel, 2.5 g of rice bran, and 5.2 g of wheat bran and medium supplementation with a mixture of naringin, rutin, and hesperidin in the concentration of (g / L): 2, 5, 4.5, and 3.0, respectively, leading to a maximum activity of 28 U / mL. The results indicate that the sequencing procedure, which allowed the definition of an optimal mixture of components, is a new way for microorganisms to have a high naringinase yield, in particular by SSF, since our data showed a 96% increase in the production of naringinase.


1991 ◽  
Vol 37 (11) ◽  
pp. 823-827 ◽  
Author(s):  
Walter M. Jaklitsch ◽  
Christian P. Kubicek ◽  
Michael C. Scrutton

The intracellular distribution and maximal activities of nine enzymes involved in the biosynthesis and degradation of citric acid in Aspergillus niger were determined under conditions of growth and of citric acid production. Under these conditions the intracellular location of the enzymes in most cases resembled that described for other filamentous fungi. Pyruvate carboxylase was found predominantly or exclusively in the cytosol. A single isoenzyme of NADP–isocitrate dehydrogenase was present, which appeared to be localised in the mitochondrion. No significant differences in maximal enzyme activities were observed except for NADP–isocitrate dehydrogenase, which showed decreased activity in production-phase mycelia. The results obtained support the scheme proposed by C. P. Kubicek for the intracellular organisation of citric acid formation but provide little evidence that this process is controlled at the level of the biosynthesis of any of the enzymes examined here. Key words: pyruvate carboxylase, citric acid production, enzyme compartmentation, Aspergillus niger.


2017 ◽  
Vol 56 (2) ◽  
pp. 507-526
Author(s):  
Esmat E. Aly ◽  
Neveen M. Khalil ◽  
G. Abd- El-Hamid ◽  
M.A. Abo-El-Soued ◽  
Heba S. Mostafa

2019 ◽  
Vol 42 ◽  
pp. e41358
Author(s):  
Fernanda de Oliveira ◽  
Marcelo Rodrigues de Melo ◽  
João Batista Buzato

The low-cost production of cellulolytic complexes that present high action at mild conditions is one of the major bottlenecks for the economic viability of the production of cellulosic ethanol. The influence of agro-industrial residues was assessed to enhance endoglucanase production by Aspergillus niger 426 grown in solid state fermentation. The highest percentage of lignin degradation was found on soybean hulls (56%) followed by sugarcane bagasse (36%) and rice straw (8.5%). The cellulose degradation, around 90%, was observed on soybean hulls and sugarcane bagasse, but only 50% on rice straw, and maximum production of endoglucanase (112.34 ± 0.984 U mL-1) was observed for soybean hulls. The best Experimental Mixture Design condition was under cultivation of 2.5 g of sugarcane bagasse, 2.3 g of rice straw and 5.2 g of soybean hulls, leading to a maximum activity of 138.92 ± 0.02 U mL-1. The statistical methodology enabled an increase of over 20% in the production of endoglucanase using agro-industrial waste. These data demonstrate that A. niger 426 is a potential source of cellulases which can be obtained by solid state fermentation using agro-industrial waste.


Author(s):  
Takuma Saito ◽  
Toshihiro Takizawa

Cells and tissues live on a number of dynamic metabolic pathways, which are made up of sequential enzymatic cascades.Recent biochemical and physiological studies of vision research showed the importance of cGMP metabolism in the rod outer segment of visual cell, indicat ing that the photon activated rhodopsin exerts activation effect on the GTP binding protein, transducin, and this act ivated transducin further activates phosphodiesterase (PDEase) to result in a rapid drop in cGMP concentration in the cytoplasm of rod outer segment. This rapid drop of cGMP concentration exerts to close the ion channel on the plasma membrane and to stop of inward current brings hyperpolarization and evokes an action potential.These sequential change of enzyme activities, known as cGMP cascade, proceeds quite rapidly within msec order. Such a rapid change of enzyme activities, such as PDEase in rod outer segment, was not a matter of conventional histochemical invest igations.


2006 ◽  
Vol 76 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Yukari Egashira ◽  
Shin Nagaki ◽  
Hiroo Sanada

We investigated the change of tryptophan-niacin metabolism in rats with puromycin aminonucleoside PAN-induced nephrosis, the mechanisms responsible for their change of urinary excretion of nicotinamide and its metabolites, and the role of the kidney in tryptophan-niacin conversion. PAN-treated rats were intraperitoneally injected once with a 1.0% (w/v) solution of PAN at a dose of 100 mg/kg body weight. The collection of 24-hour urine was conducted 8 days after PAN injection. Daily urinary excretion of nicotinamide and its metabolites, liver and blood NAD, and key enzyme activities of tryptophan-niacin metabolism were determined. In PAN-treated rats, the sum of urinary excretion of nicotinamide and its metabolites was significantly lower compared with controls. The kidneyα-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) activity in the PAN-treated group was significantly decreased by 50%, compared with the control group. Although kidney ACMSD activity was reduced, the conversion of tryptophan to niacin tended to be lower in the PAN-treated rats. A decrease in urinary excretion of niacin and the conversion of tryptophan to niacin in nephrotic rats may contribute to a low level of blood tryptophan. The role of kidney ACMSD activity may be minimal concerning tryptophan-niacin conversion under this experimental condition.


Sign in / Sign up

Export Citation Format

Share Document