Soil fungal community variation by large-scale reclamation in Sanjiang plain, China

2017 ◽  
Vol 67 (10) ◽  
pp. 679-689 ◽  
Author(s):  
Fei Xu ◽  
Tijiu Cai ◽  
Xue Yang ◽  
Wenzhi Sui
Author(s):  
Rui Xing ◽  
Qing-bo Gao ◽  
Fa-qi Zhang ◽  
Jiu-li Wang ◽  
Shi-long Chen

Abstract The Qaidam Basin is the most extensive (120,000 km2) basin on the Qinghai-Tibet Plataea (QTP). Recent studies have shown that environmental selection and dispersal limitation influence the soil fungal community significantly in a large-scale distance. However, less is known about large-scale soil fungal community assemblages and its response to the elevation gradient in the high-elevation basin ecosystems. We studied fungal assemblages using Illumina sequencing of the ITS1 region from 35 sites of the Qaidam Basin. As the increase of elevation, fungal species richness and Chao1 index also increased. The Ascomycota was the most abundant phylum (more than 70% of total sequences), and six of the ten most abundance fungal family was detected in all 35 soil samples. The key factors influencing the soil fungal community composition in the Qaidam Basin were environmental filtering (soil properties and climate factors). The Mantel test showed no significant relationship between geographic distance and community similarity (r = 0.05 p = 0.81). The absence of the distance effect might be caused by lacking dispersal limitation for the soil fungal community.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6962
Author(s):  
Xing Li ◽  
Tianming Li ◽  
Delong Meng ◽  
Tianbo Liu ◽  
Yongjun Liu ◽  
...  

Background The soil fungal community plays an important role in global carbon cycling and shows obvious seasonal variations, however, drivers, particularly stochastic drivers, of the seasonal variation in the fungal community have never been addressed in sufficient detail. Methods We investigated the soil fungal community variation between summer growing (SG) and winter fallow (WF) stage, through high throughput sequencing of internal transcribed spacer (ITS) amplicons. Subsequently, we assessed the contribution of different ecological processes to community assembly using null-model-based statistical framework. Results The results showed that the fungal community diversity decreased significantly after tobacco cropping in the SG stage and the composition showed a clear turnover between the WF and SG stages. The variation in community composition was largely attributable to the presence of a small portion of Dothideomycetes in the WF stage that dominated the soil fungal community in the SG stage. The organic matter, temperature, and water content were the main deterministic factors that regulated the fungal community; these factors explained 34.02% of the fungal community variation. Together with the result that the fungal community was mainly assembled by the dispersal process, our results suggested that the stochastic factors played important roles in driving the seasonal variation of fungal community. The dispersal limitation dominated the fungal community assembly during the WF stage when homogenizing dispersal was the main assembly process of the fungal community in the SG stage. Thus, we proposed that the dispersal processes are important drivers for seasonal variation of fungal community in tobacco planted soil.


2020 ◽  
Vol 469 ◽  
pp. 118199
Author(s):  
Daniel Oliach ◽  
Carlos Colinas ◽  
Carles Castaño ◽  
Christine R. Fischer ◽  
Francesc Bolaño ◽  
...  

2021 ◽  
Vol 193 (7) ◽  
Author(s):  
Kaining Sun ◽  
Longyun Fu ◽  
Yang Song ◽  
Liang Yuan ◽  
Haoran Zhang ◽  
...  

2015 ◽  
Vol 90 ◽  
pp. 41-48 ◽  
Author(s):  
Yan Ma ◽  
Terry Gentry ◽  
Ping Hu ◽  
Elizabeth Pierson ◽  
Mengmeng Gu ◽  
...  

2011 ◽  
Vol 59 (1) ◽  
pp. 70 ◽  
Author(s):  
Sapphire J. M. McMullan-Fisher ◽  
Tom W. May ◽  
Richard M. Robinson ◽  
Tina L. Bell ◽  
Teresa Lebel ◽  
...  

Fungi are essential components of all ecosystems in roles including symbiotic partners, decomposers and nutrient cyclers and as a source of food for vertebrates and invertebrates. Fire changes the environment in which fungi live by affecting soil structure, nutrient availability, organic and inorganic substrates and other biotic components with which fungi interact, particularly mycophagous animals. We review the literature on fire and fungi in Australia, collating studies that include sites with different time since fire or different fire regimes. The studies used a variety of methods for survey and identification of fungi and focussed on different groups of fungi, with an emphasis on fruit-bodies of epigeal macrofungi and a lack of studies on microfungi in soil or plant tissues. There was a lack of replication of fire treatment effects in some studies. Nevertheless, most studies reported some consequence of fire on the fungal community. Studies on fire and fungi were concentrated in eucalypt forest in south-west and south-eastern Australia, and were lacking for ecosystems such as grasslands and tropical savannahs. The effects of fire on fungi are highly variable and depend on factors such as soil and vegetation type and variation in fire intensity and history, including the length of time between fires. There is a post-fire flush of fruit-bodies of pyrophilous macrofungi, but there are also fungi that prefer long unburnt vegetation. The few studies that tested the effect of fire regimes in relation to the intervals between burns did not yield consistent results. The functional roles of fungi in ecosystems and the interactions of fire with these functions are explained and discussed. Responses of fungi to fire are reviewed for each fungal trophic group, and also in relation to interactions between fungi and vertebrates and invertebrates. Recommendations are made to include monitoring of fungi in large-scale fire management research programs and to integrate the use of morphological and molecular methods of identification. Preliminary results suggest that fire mosaics promote heterogeneity in the fungal community. Management of substrates could assist in preserving fungal diversity in the absence of specific information on fungi.


2022 ◽  
Vol 14 (2) ◽  
pp. 273
Author(s):  
Mengyao Li ◽  
Rui Zhang ◽  
Hongxia Luo ◽  
Songwei Gu ◽  
Zili Qin

In recent years, the scale of rural land transfer has gradually expanded, and the phenomenon of non-grain-oriented cultivated land has emerged. Obtaining crop planting information is of the utmost importance to guaranteeing national food security; however, the acquisition of the spatial distribution of crops in large-scale areas often has the disadvantages of excessive calculation and low accuracy. Therefore, the IO-Growth method, which takes the growth stage every 10 days as the index and combines the spectral features of crops to refine the effective interval of conventional wavebands for object-oriented classification, was proposed. The results were as follows: (1) the IO-Growth method obtained classification results with an overall accuracy and F1 score of 0.92, and both values increased by 6.98% compared to the method applied without growth stages; (2) the IO-Growth method reduced 288 features to only 5 features, namely Sentinel-2: Red Edge1, normalized difference vegetation index, Red, short-wave infrared2, and Aerosols, on the 261st to 270th days, which greatly improved the utilization rate of the wavebands; (3) the rise of geographic data processing platforms makes it simple to complete computations with massive data in a short time. The results showed that the IO-Growth method is suitable for large-scale vegetation mapping.


2013 ◽  
Vol 65 ◽  
pp. 128-132 ◽  
Author(s):  
Philipp-André Schmidt ◽  
Miklós Bálint ◽  
Bastian Greshake ◽  
Cornelia Bandow ◽  
Jörg Römbke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document