Neuroprotective effect of miR-410-3p against sevoflurane anesthesia-induced cognitive dysfunction in rats through PI3K/Akt signaling pathway via targeting C–X–C motif chemokine receptor 5

2019 ◽  
Vol 41 (10) ◽  
pp. 1223-1231 ◽  
Author(s):  
Rui Su ◽  
Ping Sun ◽  
Dianhong Zhang ◽  
Wei Xiao ◽  
Chun Feng ◽  
...  
2021 ◽  
Author(s):  
Xiaoxia Yang ◽  
Mengxia Wang ◽  
Qian Zhou ◽  
Yanxian Bai ◽  
Jing Liu ◽  
...  

Abstract Lepidium meyenii (Maca) is an annual or biennial herb from South America that is a member of the genus Lepidium L. in the family Cruciferae. This herb has antioxidant, anti-apoptotic, and enhances autophagy functions and can prevent cell death, and protect neurons from ischemic damage. Macamide B, an effective active ingredient of maca, has a neuroprotective role in neonatal hypoxic-ischemic brain damage (HIBD), and the underlying mechanism of its neuroprotective effect is not yet known. The purpose of this study is to explore the impact of macamide B on HIBD-induced autophagy and apoptosis and its potential mechanism for neuroprotection. The modified Rice-Vannucci method was used to induce HIBD on 7-day-old (P7) macamide B and vehicle-pretreated pups. TTC staining was used to evaluate the cerebral infarct volume of pups, brain water content was measured to evaluate the neurological function of pups, neurobehavioral testing was used to assess functional recovery after HIBD, TUNEL and FJC staining was used to detect cell autophagy and apoptosis, and western blot analysis was used to detect the expression levels of the pro-survival signaling pathway phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and autophagy and the apoptosis-related proteins. The results show that macamide B pretreatment can significantly decrease brain damage, improve the recovery of neural function after HIBD. At the same time, macamide B pretreatment can induce the activation of PI3K/AKT signaling pathway after HIBD, enhance autophagy, and reduce hypoxic-ischemic (HI)-induced apoptosis. In addition, 3-methyladenine (3-MA), an inhibitor of PI3K/AKT signaling pathway, significantly inhibits the increase in autophagy levels, aggravates HI-induced apoptosis, and reverses the neuroprotective effect of macamide B on HIBD. Our data indicate that macamide B pretreatment might regulate autophagy through PI3K/AKT signaling pathway, thereby reducing HIBD-induced apoptosis and exerting neuroprotective effects on neonatal HIBD. Macamide B may become a new drug for the prevention and treatment of HIBD.


Acta Naturae ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 48-57
Author(s):  
R. U. Ostrovskaya ◽  
S. V. Ivanov ◽  
T. A. Gudasheva ◽  
S. B. Seredenin

We investigated the cytoprotective effect of a novel low-molecular-weight NGF mimetic, GK-2 (hexamethylenediamide bis-N-monosuccinyl-L-glutamyl-L-lysine), on pancreatic -cells. The neuroprotective effect of GK-2 had been previously shown to be associated with selective activation of the PI3K/Akt signaling pathway. In this study, rats with streptozotocin (STZ)-induced type 2 diabetes mellitus were used. Metformin was used as a reference drug. STZ was immunohistochemically demonstrated to reduce the number of -cells and affect their morphological structure. Treatment of diabetic animals with GK-2 (at a dose of 0.5 mg/kg intraperitoneally or 5 mg/kg orally) or metformin (300 mg/kg orally) for 28 days reduced the damaging effect of STZ. The effect of GK-2 on manifestations of STZ-induced diabetes, such as hyperglycemia, weight loss, polyphagia, and polydipsia, was comparable to that of metformin, while the cytoprotective activity of GK-2 was slightly stronger than that of metformin. A strong positive correlation between morphometric parameters and the blood glucose level was revealed. The GK-2 cytoprotective effect on -cells is supposed to manifest through the PI3K/Akt signaling pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Muhammad Sohail Khan ◽  
Tahir Muhammad ◽  
Muhammad Ikram ◽  
Myeong Ok Kim

Curcumin is a natural polyphenolic compound widely known to have antioxidant, anti-inflammatory, and antiapoptotic properties. In the present study, we explored the neuroprotective effect of curcumin against lipopolysaccharide- (LPS-) induced reactive oxygen species- (ROS-) mediated neuroinflammation, neurodegeneration, and memory deficits in the adult rat hippocampus via regulation of the JNK/NF-κB/Akt signaling pathway. Adult rats were treated intraperitoneally with LPS at a dose of 250 μg/kg for 7 days and curcumin at a dose of 300 mg/kg for 14 days. After 14 days, the rats were sacrificed, and western blotting and ROS and lipid peroxidation assays were performed. For immunohistochemistry and confocal microscopy, the rats were perfused transcardially with 4% paraformaldehyde. In order to verify the JNK-dependent neuroprotective effect of curcumin and to confirm the in vivo results, HT-22 neuronal and BV2 microglial cells were exposed to LPS at a dose of 1 μg/ml, curcumin 100 μg/ml, and SP600125 (a specific JNK inhibitor) 20 μM. Our immunohistochemical, immunofluorescence, and biochemical results revealed that curcumin inhibited LPS-induced oxidative stress by reducing malondialdehyde and 2,7-dichlorofluorescein levels and ameliorating neuroinflammation and neuronal cell death via regulation of the JNK/NF-κB/Akt signaling pathway both in vivo (adult rat hippocampus) and in vitro (HT-22/BV2 cell lines). Moreover, curcumin markedly improved LPS-induced memory impairment in the Morris water maze and Y-maze tasks. Taken together, our results suggest that curcumin may be a potential preventive and therapeutic candidate for LPS-induced ROS-mediated neurotoxicity and memory deficits in an adult rat model.


2015 ◽  
Vol 95 ◽  
pp. 12-21 ◽  
Author(s):  
Jinru Huang ◽  
Nandani Darshika Kodithuwakku ◽  
Wei He ◽  
Yi Zhou ◽  
Wenxiang Fan ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wei-ming Ren ◽  
Ze-bin Weng ◽  
Xin Li ◽  
Li-bin Zhan

Background. Diabetes-associated cognitive decline (DACD) is one of the nervous system dysfunctions induced by diabetes mellitus with cognitive impairment as the major symptom. In a previous preliminary proteomic study, we found that endoplasmic reticulum processing and PI3K-Akt signaling pathway might be impaired in DACD pathogenesis. In addition, growth factor receptor-bound protein 2 might be a crucial protein as a molecular target of the neuroprotective effects of ZiBuPiYin recipe (ZBPYR). Methods. In this study, 6-8 weeks aged db/db mice were treated with excipients or ZBPYR for 6 weeks. Body weight and RBG were recorded weekly. Oral glucose tolerance and insulin tolerance tests were used to assess insulin sensitivity. Morris water maze (MWM) tests were used to assess memory function. The expression of Grb2, Gab2, Akt, and GSK3β in mouse hippocampus and cerebral cortex were analyzed by Western blotting. Results. ZBPYR not only significantly reduced RGB and improved glucose tolerance and insulin resistance, but also improved spatial cognition in DACD mice. The expression of Grb2 and Gab2 in hippocampus and cerebral cortex of db/db mice was upregulated after treated with ZBPYR, and then affected the PI3K/Akt signaling pathway, and inhibited GSK3β overactivity. Conclusions. This study showed that ZBPYR could enhance the memory and learning ability of db/db mice. Such neuroprotective effect might be related to the activation of Grb2-PI3K/Akt signaling which might provide a novel therapeutic target for the clinical treatment of DACD.


2019 ◽  
Vol 28 (6) ◽  
pp. 756-766 ◽  
Author(s):  
Lianhua Zhao ◽  
John H. Zhang ◽  
Prativa Sherchan ◽  
Paul R. Krafft ◽  
Wei Zhao ◽  
...  

Targeting neuronal apoptosis after intracerebral hemorrhage (ICH) may be an important therapeutic strategy for ICH patients. Emerging evidence indicates that C1q/TNF-Related Protein 9 (CTRP9), a newly discovered adiponectin receptor agonist, exerts neuroprotection in cerebrovascular disease. The aim of this study was to investigate the anti-apoptotic role of CTRP9 after experimental ICH and to explore the underlying molecular mechanisms. ICH was induced in mice via intrastriatal injection of bacterial collagenase. Recombinant CTRP9 (rCTRP9) was administrated intranasally at 1 h after ICH. To elucidate the underlying mechanisms, adiponectin receptor1 small interfering ribonucleic acid (AdipoR1 siRNA) and selective PI3 K inhibitor LY294002 were administered prior to rCTRP9 treatment. Western blots, neurofunctional assessments, immunofluorescence staining, and Fluoro-Jade C (FJC) staining experiments were performed. Administration of rCTRP9 significantly improved both short- and long-term neurofunctional behavior after ICH. RCTRP9 treatment significantly increased the expression of AdipoR1, PI3 K, p-Akt, and Bcl-2, while at the same time was found to decrease the expression of Bax in the brain, which was reversed by inhibition of AdipoR1 and PI3 K. The neuroprotective effect of rCTRP9 after ICH was mediated by attenuation of neuronal apoptosis via the AdipoR1/PI3K/Akt signaling pathway; therefore, rCTRP9 should be further evaluated as a potential therapeutic agent for ICH patients.


2003 ◽  
Vol 26 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Toru Nakazawa ◽  
Masahiko Shimura ◽  
Hiroshi Tomita ◽  
Hiroshi Akiyama ◽  
Yuki Yoshioka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document