RETRACTED ARTICLE: Clinical significance and expression of the PRSS3 and Wiskott–Aldrich syndrome protein family verprolin-homologous protein 1 for the early detection of epithelial ovarian cancer

Tumor Biology ◽  
2015 ◽  
Vol 37 (5) ◽  
pp. 6769-6773 ◽  
Author(s):  
Sima Azizmohammadi ◽  
Aghdas Safari ◽  
Mehri Seifoleslami ◽  
Rahman Ghaffarzadegan Rabati ◽  
Mohsen Mohammadi ◽  
...  
2003 ◽  
Vol 92 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Yoshihisa Kitamura ◽  
Keiichi Shibagaki ◽  
Kazuyuki Takata ◽  
Daiju Tsuchiya ◽  
Takashi Taniguchi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meysam Yousefi ◽  
Sara Rajaie ◽  
Vahideh Keyvani ◽  
Somayeh Bolandi ◽  
Malihe Hasanzadeh ◽  
...  

AbstractCirculating tumor cells (CTCs) have recently been considered as new prognostic and diagnostic markers for various human cancers; however, their significance in epithelial ovarian cancer (EOC) remains to be elucidated. In this study, using quantitative real-time PCR, we evaluated the expression of EPCAM, MUC1, CEA, HE4 and CA125 mRNAs, as putative markers of CTCs, in the blood of 51 EOC patients before and/or after adjuvant chemotherapy. Our results demonstrated that, before chemotherapy, the expression of EPCAM, MUC1, CEA and HE4 mRNAs were correlated to each other. CEA expression was correlated with tumor stage (r = 0.594, p = 0.000) before chemotherapy, whereas its expression after chemotherapy was correlated with serum levels of CA125 antigen (r = 0.658, p = 0.000). HE4 mRNA showed the highest sensitivity both before and after chemotherapy (82.98% and 85.19%, respectively) and the persistence of this marker after chemotherapy was associated with advanced disease stage. The expression of CA125 mRNA had negative correlation with the other markers and with tumor stage and therapy response (evaluated by the measurement of serum CA125 antigen). Collectively, our results indicated a better clinical significance of tumor-specific markers (CEA and HE4 mRNAs) compared to epithelial-specific markers (EPCAM and MUC1 mRNAs).


2018 ◽  
Vol 2 (3) ◽  
Author(s):  
MoonSun Jung ◽  
Amanda J Russell ◽  
Catherine Kennedy ◽  
Andrew J Gifford ◽  
Kylie-Ann Mallitt ◽  
...  

Abstract Background The Myc oncogene family has been implicated in many human malignancies and is often associated with particularly aggressive disease, suggesting Myc as an attractive prognostic marker and therapeutic target. However, for epithelial ovarian cancer (EOC), there is little consensus on the incidence and clinical relevance of Myc aberrations. Here we comprehensively investigated alterations in gene copy number, expression, and activity for Myc and evaluated their clinical significance in EOC. Methods To address inconsistencies in the literature regarding the definition of copy number variations, we developed a novel approach using quantitative polymerase chain reaction (qPCR) coupled with a statistical algorithm to estimate objective thresholds for detecting Myc gain/amplification in large cohorts of serous (n = 150) and endometrioid (n = 80) EOC. MYC, MYCN, and MYCL1 mRNA expression and Myc activity score for each case were examined by qPCR. Kaplan–Meier and Cox-regression analyses were conducted to assess clinical significance of Myc aberrations. Results Using a large panel of cancer cell lines (n = 34), we validated the statistical algorithm for determining clear thresholds for Myc gain/amplification. MYC was the most predominantly amplified of the Myc oncogene family members, and high MYC mRNA expression levels were associated with amplification in EOC. However, there was no association between prognosis and increased copy number or gene expression of MYC/MYCN/MYCL1 or with a pan-Myc transcriptional activity score, in EOC, although MYC amplification was associated with late stage and high grade in endometrioid EOC. Conclusion A systematic and comprehensive analysis of Myc genes, transcripts, and activity levels using qPCR revealed that although such aberrations commonly occur in EOC, overall they have limited impact on outcome, suggesting that the biological relevance of Myc oncogene family members is limited to certain subsets of this disease.


2020 ◽  
Author(s):  
Liancheng Zhu ◽  
Mingzi Tan ◽  
Haoya Xu ◽  
Bei Lin

Abstract Background.Human Epididymis Protein 4 (HE4) is a novel serum biomarker for diagnosis of epithelial ovarian cancer (EOC) with high specificity and sensitivity compared with CA125, and the increasing researches have been carried out on its roles in promoting carcinogenesis and chemoresistance in EOC in recent years, however, its underlying molecular mechanisms remain poorly understood. The aim of this study was to elucidate the molecular mechanisms of HE4 stimulation and to identify the key genes and pathways mediating carcinogenesis in EOC using microarray and bioinformatics analysis.Methods. We established a stable HE4-silence ES-2 ovarian cancer cell line labeled as “S”, and its active HE4 protein stimulated cells labeled as “S4”. Human whole genome microarray analysis was used to identify deferentially expressed genes (DEGs) from triplicate samples of S4 and S cells. “clusterProfiler” package in R, DAVID, Metascape, and Gene Set Enrichment Analysis (GSEA) were used to perform gene ontology (GO) and pathway enrichment analysis, and cBioPortal for WFDC2 coexpression analysis. GEO dataset (GSE51088) and quantitative real-time polymerase chain reaction (qRT-PCR) was applied for validation. The protein–protein interaction (PPI) network and modular analyses were performed using Metascape and Cytoscape. Results.In total, 713 DEGs were found (164 up regulated and 549 down regulated) and further analyzed by GO, pathway enrichment and PPI analyses. We found that MAPK pathway accounted for a significant portion of the enriched terms. WFDC2 coexpression analysis revealed ten WFDC2 coexpressed genes (TMEM220A, SEC23A, FRMD6, PMP22, APBB2, DNAJB4, ERLIN1, ZEB1, RAB6B, and PLEKHF1) that were also dramatically changed in S4 cells and validated by dataset GSE51088. Kaplan–Meier survival statistics revealed clinical significance for all of the 10 target genes. Finally, PPI was constructed, sixteen hub genes and eight molecular complex detections (MCODEs) were identified, the seeds of five most significant MCODEs were subjected to GO and KEGG enrichment analysis and their clinical significance was evaluated.Conclusions.By applying microarray and bioinformatics analyses, we identified DEGs and determined a comprehensive gene network of active HE4 stimulation in EOC cells. We offered several possible mechanisms and identified therapeutic and prognostic targets of HE4 in EOC.


Sign in / Sign up

Export Citation Format

Share Document