Olfaction in insects

e-Neuroforum ◽  
2011 ◽  
Vol 17 (3) ◽  
Author(s):  
Silke Sachse ◽  
Jürgen Krieger

SummaryOdorants provide insects with crucial information about their environment and trigger various insect behaviors. A remarkably sensitive and selective sense of smell allows the animals to detect extremely low amounts of relevant odorants and thereby recognize, e.g., food, conspecifics, and predators. In recent years, significant progress has been made to­wards understanding the molecular elements and cellular mechanisms of odorant detection in the antenna and the principles under­lying the primary processing of olfactory signals in the brain. These findings show that olfactory hairs on the antenna are specifically equipped with chemosensory detector units. They contain several binding proteins, which transfer odorants to specific receptors resid­ing in the dendritic membrane of olfacto­ry sensory neurons (OSN). Binding of odor­ant to the receptor initiates ionotropic and/or metabotropic mechanisms, translating the chemical signal into potential changes, which alter the spontaneous action potential frequency in the axon of the sensory neurons. The odor-dependent action potentials propagate from the antennae along the axon to the brain leading to an input signal with­in the antennal lobe. In the antennal lobe, the first relay station for olfactory information, the input signals are extensively processed by a complex network of local interneurons be­fore being relayed by projection neurons to higher brain centers, where olfactory perception takes place.

2021 ◽  
Author(s):  
Luis M. Franco ◽  
Emre Yaksi

ABSTRACTOngoing neural activity has been observed across several brain regions and thought to reflect the internal state of the brain. Yet, it is not fully understood how ongoing brain activity interacts with sensory experience and shape sensory representations. Here, we show that projection neurons of the fruit fly antennal lobe exhibit spatiotemporally organized ongoing activity in the absence of odor stimulation. Upon repeated exposure to odors, we observe a gradual and long-lasting decrease in the amplitude and frequency of spontaneous calcium events, as well as a reorganization of correlations between olfactory glomeruli during ongoing activity. Accompanying these plastic changes, we find that repeated odor experience reduces trial-to-trial variability and enhances the specificity of odor representations. Our results reveal a previously undescribed experience-dependent plasticity of ongoing and sensory driven activity at peripheral levels of the fruit fly olfactory system.


1997 ◽  
Vol 200 (14) ◽  
pp. 2045-2055 ◽  
Author(s):  
R S Thorn ◽  
B H Smith

The associative learning phenomenon termed 'blocking' demonstrates that animals do not necessarily associate a conditioned stimulus (e.g. X) with reinforcement if X is coincident with a second conditioned stimulus (e.g. A) that had already been associated with the same reinforcement. Blocking therefore represents a tactic that animals can use to modulate associative learning in order to focus on the most predictive stimuli at the expense of novel ones. Using an olfactory blocking paradigm in the honeybee, we investigated the mechanistic basis for olfactory blocking. We show that removing input from one antenna eliminates the blocking of one odor by another. Since antennal sensory neurons only project to the ipsilateral antennal lobe in the honeybee, more central processing regions of the brain than the antennae must be crucial for establishing blocking. Further experiments show that this bilateral interaction between brain hemispheres is crucial during both the induction and the expression of blocking. This result implies that blocking involves an active inhibition of odor association and recall, and that this inhibition is mediated by a structure that spans both brain hemispheres. This interpretation is consistent with a role for identified bilateral modulatory neurons in the production of blocking.


Author(s):  
Jürgen Rybak ◽  
Bill S. Hansson

In the vinegar fly (Drosophila melanogaster), the neuronal pathway that processes olfactory information is organized into multiple layers: a peripheral set of olfactory sensory neurons (OSNs); the primary olfactory center, or antennal lobe (AL); and two second-order neuropils, the mushroom body (MB) and lateral horn (LH). Odorants are detected by the dendrites of OSNs housed in sensilla on the maxillary palps and antennae. The OSN axons converge onto spherical synaptic neuropil within the AL termed glomeruli. OSNs that express the same odorant receptor project to the same glomerulus in a one-to-one fashion, forming discrete olfactory pathways. In the AL, a network of local interneurons (LNs) and projection neurons (PNs) contribute to the first-order processing within the glomeruli. Two types of PNs constitute the principal, parallel output pathways made by PN axons that end in the second-order neuropils of the MB and LH: uniglomerular PNs (uPNs) and multiglomerular PNs (mPNs).


2021 ◽  
Vol 118 (28) ◽  
pp. e2105732118
Author(s):  
Racheli Wercberger ◽  
Joao M. Braz ◽  
Jarret A. Weinrich ◽  
Allan I. Basbaum

A remarkable molecular and functional heterogeneity of the primary sensory neurons and dorsal horn interneurons transmits pain- and or itch-relevant information, but the molecular signature of the projection neurons that convey the messages to the brain is unclear. Here, using retro-TRAP (translating ribosome affinity purification) and RNA sequencing, we reveal extensive molecular diversity of spino- and trigeminoparabrachial projection neurons. Among the many genes identified, we highlight distinct subsets of Cck+-, Nptx2+-, Nmb+-, and Crh+-expressing projection neurons. By combining in situ hybridization of retrogradely labeled neurons with Fos-based assays, we also demonstrate significant functional heterogeneity, including both convergence and segregation of pain- and itch-provoking inputs into molecularly diverse subsets of NK1R- and non–NK1R-expressing projection neurons.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Kohei Segawa ◽  
Yukari Blumenthal ◽  
Yuki Yamawaki ◽  
Gen Ohtsuki

The lymphatic system is important for antigen presentation and immune surveillance. The lymphatic system in the brain was originally introduced by Giovanni Mascagni in 1787, while the rediscovery of it by Jonathan Kipnis and Kari Kustaa Alitalo now opens the door for a new interpretation of neurological diseases and therapeutic applications. The glymphatic system for the exchanges of cerebrospinal fluid (CSF) and interstitial fluid (ISF) is associated with the blood-brain barrier (BBB), which is involved in the maintenance of immune privilege and homeostasis in the brain. Recent notions from studies of postmortem brains and clinical studies of neurodegenerative diseases, infection, and cerebral hemorrhage, implied that the breakdown of those barrier systems and infiltration of activated immune cells disrupt the function of both neurons and glia in the parenchyma (e.g., modulation of neurophysiological properties and maturation of myelination), which causes the abnormality in the functional connectivity of the entire brain network. Due to the vulnerability, such dysfunction may occur in developing brains as well as in senile or neurodegenerative diseases and may raise the risk of emergence of psychosis symptoms. Here, we introduce this hypothesis with a series of studies and cellular mechanisms.


2017 ◽  
Vol 98 ◽  
pp. 214-222 ◽  
Author(s):  
Takuya Nirazawa ◽  
Takeshi Fujii ◽  
Yoichi Seki ◽  
Shigehiro Namiki ◽  
Tomoki Kazawa ◽  
...  

2011 ◽  
Vol 71 ◽  
pp. e79
Author(s):  
Masashi Tabuchi ◽  
Takeshi Sakurai ◽  
Hidefumi Mitsuno ◽  
Shigehiro Namiki ◽  
Ryo Minegishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document