Flow-Induced Vibration of Four Cantilever Cylinders Arranged in A Square Configuration

2021 ◽  
Vol 35 (6) ◽  
pp. 891-904
Author(s):  
Hong-jun Zhu ◽  
Wen-li Liu ◽  
Jun-lei Wang
2021 ◽  
Vol 33 (5) ◽  
pp. 053602
Author(s):  
Shubiao Wang ◽  
Wenming Cheng ◽  
Run Du ◽  
Yupu Wang ◽  
Qingrong Chen

AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025126
Author(s):  
Peng Han ◽  
Qiaogao Huang ◽  
Guang Pan ◽  
Wei Wang ◽  
Tianqi Zhang ◽  
...  

2021 ◽  
Vol 225 ◽  
pp. 108806
Author(s):  
Qunfeng Zou ◽  
Lin Ding ◽  
Rui Zou ◽  
Hao Kong ◽  
Haibo Wang ◽  
...  

2021 ◽  
pp. 107754632199887
Author(s):  
Sinan Basaran ◽  
Fevzi Cakmak Bolat ◽  
Selim Sivrioglu

Many structural systems, such as wind turbines, are exposed to high levels of stress during operation. This is mainly because of the flow-induced vibrations caused by the wind load encountered in every tall structure. Preventing the flow-induced vibration has been an important research area. In this study, an active electromagnetic mass damper system was used to eliminate the vibrations. The position of the stabilizer mass in the active electromagnetic mass damper system was determined according to the displacement information read on the system without using any spring element, unlike any conventional system. The proposed system in this study has a structure that can be implemented as a vibration suppressor in many intelligent structural systems. Two opposing electromagnets were used to determine the instant displacement of the stabilizer mass. The control currents to be given to these electromagnets are determined by using an adaptive backstepping control design. The adaptive controller algorithm can predict the wind load used in the controller design without prior knowledge of the actual wind load. It was observed that the designed active electromagnetic mass damper structure is successful in suppressing system vibrations. As a result, the proposed active electromagnetic mass damper system has been shown to be suitable for structural systems in flow-induced vibration damping.


2004 ◽  
Vol 145 (3) ◽  
pp. 190-202 ◽  
Author(s):  
Benson K. Muite ◽  
Shandon F. Quinn ◽  
Sankaran Sundaresan ◽  
K. Kesava Rao

1996 ◽  
Vol 118 (4) ◽  
pp. 920-926 ◽  
Author(s):  
M. C. Sharatchandra ◽  
D. L. Rhode

This paper analytically investigates the aerodynamic bristle force distributions in brush seals used in aircraft gas turbine engines. These forces are responsible for the onset of bristle tip lift-off from the rotor surface which significantly affects brush seal performance. In order to provide an enhanced understanding of the mechanisms governing the bristle force distributions, a full Navier-Stokes flow simulation is performed in a streamwise periodic module of bristles corresponding to the staggered square configuration. As is the case with a companion paper (Sharatchandra and Rhode, 1996), this study has the novel feature of considering the combined effects of axial (leakage) and tangential (swirl) flows. Specifically, the effects of intra-bristle spacing and bristle inclination angle are explored. The results indicate that the lifting bristle force increases with reduced intra-bristle spacing and increased inclination angle. It was also observed that increases in the axial or tangential flow rates increased the force component in the normal as well as the flow direction.


Sign in / Sign up

Export Citation Format

Share Document