Flow-induced vibration suppression of elastic square cylinder using windward-suction-leeward-blowing approach

2021 ◽  
Vol 109 ◽  
pp. 102552
Author(s):  
A.H. Rabiee ◽  
M.R. Barzan ◽  
A. Mohammadebrahim
AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025126
Author(s):  
Peng Han ◽  
Qiaogao Huang ◽  
Guang Pan ◽  
Wei Wang ◽  
Tianqi Zhang ◽  
...  

2021 ◽  
pp. 107754632199887
Author(s):  
Sinan Basaran ◽  
Fevzi Cakmak Bolat ◽  
Selim Sivrioglu

Many structural systems, such as wind turbines, are exposed to high levels of stress during operation. This is mainly because of the flow-induced vibrations caused by the wind load encountered in every tall structure. Preventing the flow-induced vibration has been an important research area. In this study, an active electromagnetic mass damper system was used to eliminate the vibrations. The position of the stabilizer mass in the active electromagnetic mass damper system was determined according to the displacement information read on the system without using any spring element, unlike any conventional system. The proposed system in this study has a structure that can be implemented as a vibration suppressor in many intelligent structural systems. Two opposing electromagnets were used to determine the instant displacement of the stabilizer mass. The control currents to be given to these electromagnets are determined by using an adaptive backstepping control design. The adaptive controller algorithm can predict the wind load used in the controller design without prior knowledge of the actual wind load. It was observed that the designed active electromagnetic mass damper structure is successful in suppressing system vibrations. As a result, the proposed active electromagnetic mass damper system has been shown to be suitable for structural systems in flow-induced vibration damping.


2022 ◽  
Vol 23 (1) ◽  
pp. 358-369
Author(s):  
Nur Ain Shafiza Ramzi ◽  
Kee Quen Lee ◽  
NUR AMIRA BALQIS MOHD ZAINURI ◽  
HOOI SIANG KANG ◽  
NOR’AZIZI OTHMAN ◽  
...  

An experimental study was carried out to identify the effect of angle of attack on flow-induced vibration (FIV) of square cylinders. The experiment was conducted at the Aeronautical and Wind Engineering Laboratory (AEROLAB), UTM Kuala Lumpur using a wind tunnel that was free from external wind conditions. A supporting structure was designed and fabricated to conduct this experiment. The importance of this support structure was to enable the rigid cylinder to suspend and vibrate freely upon excitation of wind speed. The results were analysed through the response of amplitude and frequency of the rigid cylinder over a velocity range of 0.5m/s to 4.0m/s. The results showed that for a square cylinder of ?=0°, vortex-induced vibration (VIV) occurred at low reduced velocity (UR) in range of 5 ? UR ? 10 and galloping occurred at higher reduced velocity which started at UR=15. A tranquil zone was found between VIV and galloping in the reduced velocity range of 10 ? UR ? 15. As for ?=22.5° and 45°, only VIV response was found at low reduced velocity in range of 4? UR ? 9. ABSTRAK: Satu kajian eksperimentasi telah dilakukan bagi mengenal pasti pengaruh sudut serangan oleh getaran cetusan-aliran (FIV) dalam silinder persegi. Eksperimen ini dijalankan di Makmal Kejuruteraan Aeronautika dan Angin (AEROLAB), UTM Kuala Lumpur dengan menggunakan terowong angin yang bebas dari pengaruh angin luar. Struktur sokongan telah direka dan difabrikasi bagi tujuan eksperimen ini. Ini penting bagi membolehkan silinder pegun tergantung dan bergetar dengan bebas semasa ujian kelajuan angin. Dapatan kajian dianalisis melalui tindak balas amplitud dan frekuensi silinder pegun pada kadar halaju 0.5m/s sehingga 4.0m/s. Hasil kajian menunjukkan bahawa bagi silinder persegi ? = 0 °, getaran pengaruh-vorteks (VIV) berlaku pada halaju rendah (UR) dalam julat 5 ? UR ? 10 dan getaran lebih teruk telah ketara berlaku pada kadar halaju berkurang iaitu bermula pada UR = 15. Zon tenang dijumpai antara VIV dan getaran teruk pada kadar halaju berkurang 10 ? UR ? 15. Adapun pada ? = 22.5° dan 45°, hanya tindak balas VIV dijumpai pada halaju rendah dalam kadar 4? UR ? 9.


2010 ◽  
Vol 2010 (0) ◽  
pp. 263-264
Author(s):  
Yusuke KAWABATA ◽  
Tsutomu TAKAHASHI ◽  
Mizuyasu KOIDE ◽  
Masataka SHIRAKASHI

Author(s):  
Masanobu Watanabe ◽  
Kunihiko Kinugasa ◽  
Hiroyuki Adachi ◽  
Hajime Mori

Jet pumps are key components to feed cooling water into reactor core in boiling water reactor. Inside condition of jet pumps is high flow condition. Therefore, jet pumps have risk of damages by flow-induced vibration, especially, the leakage-flow-induced vibration at the slip joint between the inlet mixer and the diffuser in extended power uprating condition with increasing core flow rate or particular operating condition such as single loop operation that increases differential pressure of the slip joint. To mitigate the risk of the leakage-flow-induced vibration, slip joint extension which can be installed on the top of diffuser was developed (See Figure 1). Self-excited vibration is treated as negative damping i.e. unstable state. It is well-known that the leakage flow through divergent gap flow passage causes the negative damping. However, the configuration of the gap flow passage of the slip joint with slip joint extension is complicated flow passage which consists of convergent, divergent and parallel flow passage region. To addition to this, the leakage flow direction in normal or power uprating condition is opposite to in abnormal operating condition such as single loop operating. Therefore, it is necessary to identify the optimum configuration of gap flow passage of the slip joint extension to suppress leakage-flow-induced vibration for various operating conditions. To achieve this goal, the gap flow passage of the slip joint extension was determined using transfer matrix method based on the leakage-flow-induced vibration theory. The effect and characteristic of vibration suppression for the slip joint extension was confirmed by fundamental tests that simulated the slip joint configuration.


2021 ◽  
Vol 931 ◽  
Author(s):  
Peng Han ◽  
Emmanuel de Langre

The flow-induced vibration of square cylinders under flow is known to be caused by two distinct mechanisms of interaction: vortex-induced vibrations and galloping. In the present paper we address the issue of the apparent suppression of galloping when the mass ratio between the solid and the fluid is low enough. By using a reduced-order model that we validate on pre-existing results, we show that galloping is actually not suppressed, but delayed to higher values of the flow velocity. This is explained using a linear stability analysis where the competition between unstable modes is related to the transition between vortex-induced vibration and galloping. Direct numerical simulations coupled with a moving square cylinder confirm that galloping can be found even at very low mass ratios.


Sign in / Sign up

Export Citation Format

Share Document