Laser Cutting Process: Influence of Workpiece Thickness and Laser Pulse Frequency on the Cut Quality

2012 ◽  
Vol 37 (8) ◽  
pp. 2277-2286 ◽  
Author(s):  
Omer Keles ◽  
Ufuk Oner
Author(s):  
Janez Gotlih ◽  
Simon Klancnik ◽  
Derzija Begic-Hajdarevic ◽  
Mirko Ficko ◽  
Ahmet Cekic ◽  
...  

Author(s):  
Yadvinder Singh ◽  
Jujhar Singh ◽  
Shubham Sharma ◽  
Vivek Aggarwal ◽  
Catalin I. Pruncu

AbstractCurrent research focuses on optimizing various quality characteristics for kerf geometry generated through laser cutting of Coir fibre/carbon fibre/epoxy resin hybrid composite adjacent to straight cut profile employing pulsed CO2 laser system. The Kerf taper (KT) and the Surface roughness (SR) are the main quality parameters discussed. Dependent on significant process parameters, namely gas pressure, cutting speed, pulse frequency and pulse width predictive models were developed. In accordance with Taguchi's L9 orthogonal array (OA), the cutting trials are designed. Process-parametric optimization was performed using Response Surface Methodology (RSM). Furthermore, experiments were performed to obtain experimental data for the analysis of cut quality features. The impact of the input variables on the response characteristics is also explored. The morphological characterizations have been performed to analysis the effect of machining-variables and cut-quality for the top and bottom kerf widths with various laser cutting variables in the pulse laser-cutting of Coir-fibre/carbon-fibre/epoxy-resin hybrid composite. For SR and KT, the developed second order surface response model was found very successful. The optimal levels of cutting variables for KT are established at Gas pressure-6 N/mm2, pulse width-2.04 ms, cutting speed-8.01 mm/s, pulse frequency-15 Hz, for sample A1, Gas pressure-5.47 N/mm2, pulse width-2.5 ms, cutting speed-8.81 mm/s, pulse frequency-8.43 Hz, for sample A2, Gas pressure-3.85 N/mm2, pulse width-1.5 ms, cutting speed-9.06 mm/s, pulse frequency-5 Hz, for sample A3 additionally for SR Gas pressure-2 N/mm2, pulse width-1.5 ms, cutting speed-7 mm/s, pulse frequency-5 Hz, for sample A1, Gaspressure-2.36 N/mm2, pulse width-1.5 ms, cutting speed-7 mm/s, pulse frequency-15 Hz, for sample A2, Gaspressure-6 N/mm2, pulse width-1.5 ms, cutting speed-11 mm/s, pulse frequency-8.73 Hz, for sample A3. Regression results and linear and square impact of laser cutting variables have been revealed to be important to validate the model.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3839
Author(s):  
Ray Tahir Mushtaq ◽  
Yanen Wang ◽  
Mudassar Rehman ◽  
Aqib Mashood Khan ◽  
Mozammel Mia

Carbon dioxide (CO2) laser cutting finds one of its most relevant applications in the processing of a wide variety of polymeric materials like thermoplastics and thermosetting plastics. Different types of polymeric materials like polypropylene (PP), polymethyl methacrylate (PMMA), low- and high-density polyethylene (LDPE, HDPE), are processed by laser for different household as well as commercial products in the industry. The reason is their easy availability and economical aspect in the market. The problems associated with laser cutting include heat-affected zone (HAZ) generated on the cut surface, kerf width (KW), surface roughness (SR), dross formation, and striations formation. Furthermore, other related problems include taper cutting for deep parts and high-power consumption. The primary purpose of this work is a comprehensive literature review in CO2 laser cutting of polymeric materials. The influence of parametric variation on the cut quality is also explained. Cut quality in terms of KW, SR, HAZ, dross formation, and striations formation is analyzed by optimizing cutting variables like laser power (PL), cutting speed (CS), assist gas pressure (Pg), pulse frequency, nozzle type and its diameter, and stand-off distance (SOD). The effects of the laser cutting on the properties of different thermoplastics/thermosetting materials are also reported. However, this topic requires further studies on exploring the range of polymeric materials, and their optimal parameters selection to improve the cut quality. Therefore, the research gaps and future research directions are also highlighted in the context of CO2 laser cutting for polymeric materials.


2002 ◽  
Vol 12 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Y. Zamachtchikov ◽  
F. Breaban ◽  
P. Vantomme ◽  
A. Deffontaine

Sign in / Sign up

Export Citation Format

Share Document