Improved Multiphase Flow Rate Models for Chokes in the Algerian HMD Oil Field

Author(s):  
Nour ElHouda Tellache ◽  
Meriem Waffa Hassen ◽  
Mohamed Otmanine ◽  
Mohamed Khodja
Keyword(s):  
Author(s):  
Nakyeong Seo ◽  
Nabil Kharoua ◽  
Lyes Khezzar ◽  
Mohamed Alshehhi ◽  
Mahmoud Meribout

Abstract The present study addresses itself to the performance assessment of a novel in-line gas-liquid separator. The separator is developed by FRAMES company under the name of SwirlSep based on the interaction of a swirling flow, generated by an innovative devise called swirl cage, and a hollow conical bluff body designed to deviate the gaseous phase internally.. The separator is intended to be implemented within a multiphase flow metering system in oil field gathering stations in the Gulf region. The study represents a preliminary step among a design process including elaborate lab-scale and filed tests. The flow in the gas-liquid separator is studied using Computational Fluid Dynamics CFD. The Shear Stress Transport (SST) k-ω turbulence and Eulerian-Eulerian multiphase models, under different flow conditions, were used to simulate real flow scenarios. The scenarios were chosen to replicate flow conditions that could exist during the operation of oil wells over their lifetime with the aim to provide guidance for proper control of the separator valves. The fraction of the total flow is prescribed at each outlet, using an outflow boundary condition, to mimic the action of the control valves. At the inlet, the phase velocity and volume fraction were prescribed. The outlet streams and their phase’s content were, then, analyzed together with the distribution of the velocity and concentration fields inside the separator. Velocity and pressure drop were found to increase with the increase of the outflow in one outlet when changing the flow split. Flow control, at the outlets, caused an increase of the oil-in-gas entrainment when trying to minimize gas-in-oil entrainment which is a non-trivial task. The effects of the flow split specified appeared downstream of the conical bluff body only when the inflow conditions were kept constant whereas the flow field remained identical upstream of the cone. A recirculation zone was generated in the annular space downstream of the cone and affected the separator performance considerably. The recirculation zone was due to the effect of the higher flow rate towards the gas outlet and disappeared when the flow rate towards the oil outlet tended to be equal or higher. The phase distribution was identical upstream of the cone and depended on the flow split downstream of the cone. The cases considered served as an assessment of the separator performance under different multiphase flow conditions replicating realistic scenarios.


1996 ◽  
Vol 118 (1) ◽  
pp. 29-35 ◽  
Author(s):  
K. Minemura ◽  
K. Egashira ◽  
K. Ihara ◽  
H. Furuta ◽  
K. Yamamoto

A turbine flowmeter is employed in this study in connection with offshore oil field development, in order to measure simultaneously both the volumetric flow rates of air-water two-phase mixture. Though a conventional turbine flowmeter is generally used to measure the single-phase volumetric flow rate by obtaining the rotational rotor speed, the method proposed additionally reads the pressure drop across the meter. After the pressure drop and rotor speed measured are correlated as functions of the volumetric flow ratio of the air to the whole fluid and the total volumetric flow rate, both the flow rates are iteratively evaluated with the functions on the premise that the liquid density is known. The evaluated flow rates are confirmed to have adequate accuracy, and thus the applicability of the method to oil fields.


2021 ◽  
Author(s):  
Miguel Angel Cedeno

Abstract The unconventional resources development has grown tremendously as a result of the advancement in horizontal drilling technology coupled with hydraulic fracturing. However, as more wells are drilled and fractured close to each other, frac hits have become a major challenge in these wells. The aim of this work is to investigate the effect of nitrogen injection flow rate and pressure on unloading frac hits gas wells in transient multiphase flow. A numerical simulation model was created using a transient multiphase flow simulator to mimic the unloading process of frac hits by injecting nitrogen from the surface through the annulus section of the well. Many simulation cases were created and analyzed to comprehend the effect of the nitrogen injection rate and pressure on the unloading of frac hits. The model mimicked real field data from currently active well in the Eagle Ford Shale. The results showed that as the nitrogen injection pressure increases, the nitrogen volume and the time to unload the frac hits decrease. On the other hand, increasing the injection rate of nitrogen will increase the nitrogen volume required to unload the frac hits. In addition, the time to unload frac hits will be decreased as the nitrogen injection rate increases. These results indicate that the time required to unload frac hits will be minimized if higher flow rates of nitrogen were utilized. Nonetheless, the volume of nitrogen required to unload the frac hits will be maximized. An important observation to highlight is that the operators can save money by reducing the time for injecting nitrogen. This observation was verified when increasing the injection pressure in the frac hit well in the Eagle Ford Shale, the time of injection was reduced 20%. This study presents the effects of nitrogen injection flow rate and injection pressure for unloading frac hits in gas wells. Due to the lack of published studies about this topic, this work can serve as a practical guideline for unloading frac hits in gas wells.


Author(s):  
Bruno Pinguet ◽  
Paul Guieze ◽  
Dave MacWilliam ◽  
Brad Martin

Representative reservoir fluid sampling and characterization has become increasingly important over the years. With exploration, appraisal and development activities moving into marginal fields and more challenging environments, accurate fluid characterization becomes more critical. This can be said for the formation tester, DST and multiphase sampling and fluid characterization environments with the most challenging area in recent years arguably being the multiphase environment. Multiphase flow meters have been accepted for several years now by the industry. Their use in permanent or well testing applications has been growing rapidly. In many cases, multiphase flow meters have replaced the separator for flow rate evaluation, but some fundamental needs from the client were not addressed properly, such as the ability to collect representative samples for phase-behavior characterization. Moreover, metering accuracies has been questionable in many cases (at very high GVF or in wet gas conditions, high pressure or /and high temperature).This paper focus on the Multiphase Active Sampling Device Service (MASS), a fluid sampling and analysis service that can be provided with the Vx multiphase metering technology with the objective of collecting representative samples, isolating and analyzing each fluid phase, and providing data from the analysis to input to the Vx acquisition software data to obtain more accurate flow rates. The collection of phase representative samples also opens the opportunity for a full recombination PVT study to be performed using the improved recombination ratio at line conditions from the multiphase flow meter. This dedicated multiphase fluid sampling and analysis system, combined with Vx technology provides flow rate better and fluid property than to a conventional test separator system.


2015 ◽  
Vol 31 (5) ◽  
pp. 698-707 ◽  
Author(s):  
Joon-Hyung Kim ◽  
Uk-Hee Jung ◽  
Sung Kim ◽  
Joon-Yong Yoon ◽  
Young-Seok Choi

2012 ◽  
Vol 508 ◽  
pp. 71-74
Author(s):  
Charles Adam Uleh ◽  
Jian Yong Zhang ◽  
Dong Lai Xu ◽  
Ian French

This paper introduces a prototype multiphase flow metering system, named Uletech, for multiphase flow measurement. The Uletech Multiphase Flow Meter (UMFM) is based on the combination of particle recognition and the use of Laser Imaging Technology in the form of Particle Imaging Velocimetry (PIV). PIV uses tracer particles which follow the gas or liquid phase. The high resolution digital laser cameras identify/recognize all the different sizes of particle (gas, oil and water) in a multiphase flow. The cameras have sufficiently high resolutions (pixel size) to "see" the tracer particles. The prevailing conditions of high pressure and temperature of the flow regimes makes actual measurement a great challenge. The velocity differences between phases (hold up and slip) means unless the velocities of individual phases and concentrations are known, the true flow rate is practically impossible to obtain. The system comprised of two cameras, laser source, optical arrangement, computer data acquisition system, synchronizer and MATLAB based software. An algorithm that correlates the cameras view to the volume within the pipe has been developed through this research. The computer acquires image signals from the upstream and/or downstream cameras, and carries out the calculation of cross correlation between the two image frames so that the velocity of each pixel can be found. A Gas Liquid Chromatograph (GLC) provides the composition (concentration) of the gas and the liquid hydrocarbon (HC). The product of phase velocity and phase concentration provides the flow rate of the individual phase. This work provides theoretical analysis and experimental validations, and discusses the advantages of the system and its further development.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1458-1469 ◽  
Author(s):  
Victor W. de Azevedo ◽  
João A. de Lima ◽  
Emilio E. Paladino

Summary This paper presents the development of a computational-fluid-dynamics (CFD) model for the 3D transient two-phase flow within a progressing-cavity pump (PCP). The model implementation was only possible because of the meticulous mesh-generation and mesh-motion algorithm, previously published by the authors, which is briefly described herein. In this algorithm, a structured mesh was generated by defining all nodes’ positions and connectivities, for each rotor position by means of FORTRAN subroutines, which were embodied into ANSYS CFX software. The model is capable of predicting accurately the volumetric efficiency and the viscous losses, and it provides detailed information of pressure and velocity fields and void distribution along the pump. Such information could be of fundamental importance for product development and/or optimization for field operation. In field applications, the common situation is that in which the oil comes into the pump accompanied with free gas, which characterizes a multiphase flow. Simplified models on the basis of the calculation of the backflow or “slippage,” which is subtracted from the displaced flow rate, fail to characterize the PCP performance under multiphase conditions because the slip is variable along the pump. In this model, the governing equations were solved with an element-based finite-volume method in a moving mesh. The Eulerian-Eulerian approach, considering the homogeneous model, is used to model the flow of the gas/liquid mixture. The compressibility of the gas is taken into account, which is one of the main shortcomings in positive/constant displacement pumps. The effects of the different gas-volume fractions (GVFs) in pump volumetric efficiency, pressure distribution, power, slippage flow rate, and volumetric flow rate were analyzed, and some new insights are presented about the slippage in PCPs operating in multiphase conditions. The results show that the developed model is capable of reproducing pump dynamic behavior under multiphase-flow conditions performed early in experimental works.


Sign in / Sign up

Export Citation Format

Share Document