Theoretical Exploration of Thermal Transportation with Lorentz Force for Fourth-Grade Fluid Model Obeying Peristaltic Mechanism

Author(s):  
M. Y. Rafiq ◽  
Zaheer Abbas ◽  
Jafar Hasnain
2020 ◽  
Vol 34 (10) ◽  
pp. 2050091
Author(s):  
A. M. Siddiqui ◽  
Ayesha Sohail ◽  
Khush Bakhat Akram ◽  
Qurat-ul-Ain Azim

Flow of fluids between rotating surface is encountered in many industrial, manufacturing, mixing and biological processes. These fluids are complex, exhibit various rheological characteristics, and thus follow highly nonlinear models. In this paper, we have used fourth grade fluid model to represent fluids involved in such processes. The steady flow between two coaxial rotating disks is modeled. The resulting highly nonlinear equations are solved using perturbation approach. The velocity field in three-dimensional cylindrical coordinate system is reported. The results are then simulated to present a visual understanding of the flow.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Taha Aziz ◽  
A. Fatima ◽  
F. M. Mahomed

This study focuses on obtaining a new class of closed-form shock wave solution also known as soliton solution for a nonlinear partial differential equation which governs the unsteady magnetohydrodynamics (MHD) flow of an incompressible fourth grade fluid model. The travelling wave symmetry formulation of the model leads to a shock wave solution of the problem. The restriction on the physical parameters of the flow problem also falls out naturally in the course of derivation of the solution.


Author(s):  
M. Ijaz Khan ◽  
F. Alzahrani

This paper analyzes the influence of mixed convective fourth grade nanofluid flow by a stretchable Riga device in the presence variable thermal conductivity and mass diffusivity. Heat and mass transportation are considered with Cattaneo–Christov (CC) model. Thermal radiation and dissipation are also taken in the energy expression. Suitable transformation is employed to reduce partial differential system into nonlinear ordinary system. The governing nonlinear expression is solved via optimal homotopy analysis method. Impact of different physical variables is discussed via graphs. Velocity profile is enhanced for higher values of cross viscous parameter and fourth grade fluid variable. Fluid temperature enhances for higher estimation of thermal relaxation parameter but reverse behavior is seen for solutal concentration variable on nanoparticle concentration.


Sign in / Sign up

Export Citation Format

Share Document