Comparative Mechanical, Tribological and Morphological Properties of Epoxy Resin Composites Reinforced With Multi-Walled Carbon Nanotubes

Author(s):  
Rittin Abraham Kurien ◽  
D. Philip Selvaraj ◽  
M. Sekar ◽  
Chacko Preno Koshy ◽  
K. M. Praveen
2010 ◽  
Vol 18 (6) ◽  
pp. 1397-1407 ◽  
Author(s):  
Parveen Garg ◽  
Bhanu Pratap Singh ◽  
Gaurav Kumar ◽  
Tejendra Gupta ◽  
Indresh Pandey ◽  
...  

2015 ◽  
Vol 814 ◽  
pp. 101-106
Author(s):  
Shao Feng Lin ◽  
Cai Jiang ◽  
Jian Wei Zhang ◽  
Da Zhi Jiang ◽  
Su Ju

In this study, electrical properties of multi-walled carbon nanotubes (MWCNTs) reinforced epoxy resin composites were investigated, with respect to the method of dispersion, surfactants, content and chemical groups of CNTs. Experimental results show that chemical functionalization and surfactants improved the dispersion of CNTs in epoxy resin. Electrical conductivity of epoxy increased by two orders of magnitude with 0.5 wt% MWCNTs, while seven orders of magnitude with 2.0 wt% MWCNTs-NH2. The results also indicated that an effective electron transport channels formed in the composites with 0.5 wt% CNTs approximately.


2006 ◽  
Vol 505-507 ◽  
pp. 1075-1080 ◽  
Author(s):  
Kuang Chyi Lee ◽  
Hsin Her Yu ◽  
Shug June Hwang ◽  
Ye Shiu Li ◽  
Min Hsun Cheng ◽  
...  

In this study, the surfaces of the multi-walled carbon nanotubes (MWNTs) were treated by acrylic acid. The acid-treated MWNTs were functionalized and were characterized by Infrared spectroscopy. The MWNTs were opened at their ends by ultrasonic treating and UV irradiating. Different adding amounts of the opened MWNTs were filled to the epoxy resin, and their mechanical properties and thermal properties were measured by Instron, impact and differential scanning calorimeter (DSC), etc. The optimum adding amount of MWNTs to the epoxy resin is 2.0%, which is according to the parameters obtained from mechanical testing and Tg. The activation energy of the epoxy resin during curing can be calculated from infrared spectra according to the change of the epoxide band. The electrical conductivity of the MWNTs-filled composites was increased with proper (12.87%) amount of MWNTs adding, this is due to the networks constructed between MWNTs completely.


2011 ◽  
Vol 13 (2) ◽  
pp. 62-69 ◽  
Author(s):  
Maria Wladyka-Przybylak ◽  
Dorota Wesolek ◽  
Weronika Gieparda ◽  
Anna Boczkowska ◽  
Ewelina Ciecierska

The effect of the surface modification of carbon nanotubes on their dispersion in the epoxy matrix Functionalization of multi-walled carbon nanotubes (MWCNTs) has an effect on the dispersion of MWCNT in the epoxy matrix. Samples based on two kinds of epoxy resin and different weight percentage of MWCNTs (functionalized and non-functionalized) were prepared. Epoxy/carbon nanotubes composites were prepared by different mixing methods (ultrasounds and a combination of ultrasounds and mechanical mixing). CNTs modified with different functional groups were investigated. Surfactants were used to lower the surface tension of the liquid, which enabled easier spreading and reducing the interfacial tension. Solvents were also used to reduce the liquid viscosity. Some of them facilitate homogeneous dispersion of nanotubes in the resin. The properties of epoxy/nanotubes composites strongly depend on a uniform distribution of carbon nanotubes in the epoxy matrix. The type of epoxy resin, solvent, surfactant and mixing method for homogeneous dispersion of CNTs in the epoxy matrix was evaluated. The effect of CNTs functionalization type on their dispersion in the epoxy resins was evaluated on the basis of viscosity and microstructure studies.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Seyed Ali Mirsalehi ◽  
Amir Ali Youzbashi ◽  
Amjad Sazgar

AbstractIn this study, epoxy hybrid nanocomposites reinforced by carbon fibers (CFs) were fabricated by a filament winding. To improve out-of-plane (transverse) mechanical properties, 0.5 and 1.0 Wt.% multi-walled carbon nanotubes (MWCNTs) were embedded into epoxy/CF composites. The MWCNTs were well dispersed into the epoxy resin without using any additives. The transverse mechanical properties of epoxy/MWCNT/CF hybrid nanocomposites were evaluated by the tensile test in the vertical direction to the CFs (90º tensile) and flexural tests. The fracture surfaces of composites were studied by scanning electron microscopy (SEM). The SEM observations showed that the bridging of the MWCNTs is one of the mechanisms of transverse mechanical properties enhancement in the epoxy/MWCNT/CF composites. The results of the 90º tensile test proved that the tensile strength and elongation at break of nanocomposite with 1.0 Wt.% MWCNTs improved up to 53% and 50% in comparison with epoxy/CF laminate composite, respectively. Furthermore, the flexural strength, secant modulus, and elongation of epoxy/1.0 Wt.% MWCNT/CF hybrid nanocomposite increased 15%, 7%, and 9% compared to epoxy/CF laminate composite, respectively.


Sign in / Sign up

Export Citation Format

Share Document