scholarly journals Nonlinear equations with a generalized fractional Laplacian

Author(s):  
Igor Kossowski ◽  
Bogdan Przeradzki

AbstractWe study a generalization of the power of Laplace operator with null Dirichlet conditions by means of the spectral theory and prove several existence results for nonlinear equations with such operators, especially when the problem is resonant. Some regularity results are also obtained.

2020 ◽  
Vol 150 (5) ◽  
pp. 2682-2718 ◽  
Author(s):  
Boumediene Abdellaoui ◽  
Antonio J. Fernández

AbstractLet$\Omega \subset \mathbb{R}^{N} $, N ≽ 2, be a smooth bounded domain. For s ∈ (1/2, 1), we consider a problem of the form $$\left\{\begin{array}{@{}ll} (-\Delta)^s u = \mu(x)\, \mathbb{D}_s^{2}(u) + \lambda f(x), & {\rm in}\,\Omega, \\ u= 0, & {\rm in}\,\mathbb{R}^{N} \setminus \Omega,\end{array}\right.$$ where λ > 0 is a real parameter, f belongs to a suitable Lebesgue space, $\mu \in L^{\infty}$ and $\mathbb {D}_s^2$ is a nonlocal ‘gradient square’ term given by $$\mathbb{D}_s^2 (u) = \frac{a_{N,s}}{2} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}\,{\rm d}y.$$ Depending on the real parameter λ > 0, we derive existence and non-existence results. The proof of our existence result relies on sharp Calderón–Zygmund type regularity results for the fractional Poisson equation with low integrability data. We also obtain existence results for related problems involving different nonlocal diffusion terms.


2020 ◽  
Vol 10 (1) ◽  
pp. 895-921
Author(s):  
Daniele Cassani ◽  
Luca Vilasi ◽  
Youjun Wang

Abstract In this paper we study a class of one-parameter family of elliptic equations which combines local and nonlocal operators, namely the Laplacian and the fractional Laplacian. We analyze spectral properties, establish the validity of the maximum principle, prove existence, nonexistence, symmetry and regularity results for weak solutions. The asymptotic behavior of weak solutions as the coupling parameter vanishes (which turns the problem into a purely nonlocal one) or goes to infinity (reducing the problem to the classical semilinear Laplace equation) is also investigated.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Cabré ◽  
Pietro Miraglio ◽  
Manel Sanchón

AbstractWe consider the equation {-\Delta_{p}u=f(u)} in a smooth bounded domain of {\mathbb{R}^{n}}, where {\Delta_{p}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if {n\geq p+\frac{4p}{p-1}}. Instead, when {n<p+\frac{4p}{p-1}}, stable solutions have been proved to be bounded only in the radial case or under strong assumptions on f. In this article we solve a long-standing open problem: we prove an interior {C^{\alpha}} bound for stable solutions which holds for every nonnegative {f\in C^{1}} whenever {p\geq 2} and the optimal condition {n<p+\frac{4p}{p-1}} holds. When {p\in(1,2)}, we obtain the same result under the nonsharp assumption {n<5p}. These interior estimates lead to the boundedness of stable and extremal solutions to the associated Dirichlet problem when the domain is strictly convex. Our work extends to the p-Laplacian some of the recent results of Figalli, Ros-Oton, Serra, and the first author for the classical Laplacian, which have established the regularity of stable solutions when {p=2} in the optimal range {n<10}.


2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


2018 ◽  
Vol 228 (2) ◽  
pp. 835-861
Author(s):  
Patricio Felmer ◽  
Disson dos Prazeres ◽  
Erwin Topp

2013 ◽  
Vol 13 (2) ◽  
Author(s):  
Gabriele Bonanno ◽  
Giovanni Molica Bisci ◽  
Vicenţiu D. Rădulescu

AbstractWe establish existence results and energy estimates of solutions for a homogeneous Neumann problem involving the p-Laplace operator. The case of large dimensions, corresponding to the lack of compactness of W


2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Antonio Iannizzotto ◽  
Shibo Liu ◽  
Kanishka Perera ◽  
Marco Squassina

AbstractWe investigate a class of quasi-linear nonlocal problems, including as a particular case semi-linear problems involving the fractional Laplacian and arising in the framework of continuum mechanics, phase transition phenomena, population dynamics and game theory. Under different growth assumptions on the reaction term, we obtain various existence as well as finite multiplicity results by means of variational and topological methods and, in particular, arguments from Morse theory.


Sign in / Sign up

Export Citation Format

Share Document