Biodiesel production by interesterification of rapeseed oil with methyl formate in presence of potassium alkoxides

Author(s):  
Z. Abelniece ◽  
L. Laipniece ◽  
V. Kampars
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Violeta Makarevičienė ◽  
Ieva Sendžikaitė

Due to the awareness of adverse effects of conventional fuels on environment and on a frequent rise in the crude oil price, the need for a sustainable and environment-friendly alternate source of energy has gained importance. Recently, options have been analysed to replace the triglyceride transesterification process, which is generally used in biodiesel production, by the process where raw glycerol is not generated, whereas triacylglycerides obtained instead glycerol can be directly used as fuel for a diesel engine in a mixture with fatty acid esters. In the present work, interesterification of rapeseed oil to biodiesel was carried out with methyl formate and using lipase as a catalyst. The research was carried out at the Laboratory of Chemical and Biochemical Research for Environmental Technology of Aleksandras Stulginskis University. First, the most effective biocatalyst suitable for the process was selected. 14 different lipases were studied. The samples obtained after the synthesis were analysed by the thin-layer and gas chromatography. Process experiments were performed using a methyl formate to oil molar ratio of 6:1 to 40:1, a lipase amount of 5 to 17% (mass of oil) and synthesis duration of 3 to 48 h. The highest yield of fatty acid methyl esters (FAME) was obtained using Lipozyme RM IM as a catalyst and its optimal amount was 13%. The optimal temperature was found to be 20°C and the duration of interesterification 42 h. The optimal molar ratio of methyl formate to oil was determined to be 32:1. Under the obtained conditions the transesterification degree was 60.68 ± 0.95%.


Author(s):  
K. Malins ◽  
V. Kampars ◽  
R. Kampare ◽  
T. Rusakova

The transesterification of vegetable oil using various kinds of alcohols is a simple and efficient renewable fuel synthesis technique. Products obtained by modifying natural triglycerides in transesterification reaction substitute fossil fuels and mineral oils. Currently the most significant is the biodiesel, a mixture of fatty acid methyl esters, which is obtained in a reaction with methanol, which in turn is obtained from fossil raw materials. In biodiesel production it would be more appropriate to use alcohols which can be obtained from renewable local raw materials. Ethanol rouses interest as a possible reagent, however, its production locally is based on the use of grain and therefore competes with food production so it would implicitly cause increase in food prices. Another raw material option is alcohols that can be obtained from furfurole. Furfurole is obtained in dehydration process from pentose sugars which can be extracted from crop straw, husk and other residues of agricultural production. From furfurole the tetrahydrofurfuryl alcohol (THFA), a raw material for biodiesel, can be produced. By transesterifying rapeseed oil with THFA it would be possible to obtain completely renewable biodiesel with properties very close to diesel [2-4]. With the purpose of developing the synthesis of such fuel, in this work a three-stage synthesis of rapeseed oil tetrahydrofurfurylesters (ROTHFE) in sulphuric acid presence has been performed, achieving product with purity over 98%. The most important qualitative factors of ROTHFE have been determined - cold filter plugging point, cetane number, water content, Iodine value, phosphorus content, density, viscosity and oxidative stability.


OCL ◽  
2019 ◽  
Vol 26 ◽  
pp. 26 ◽  
Author(s):  
Edwige Charbonnier ◽  
Aline Fugeray-Scarbel ◽  
Stéphane Lemarié

This article focuses on the interest in improving the nitrogen use efficiency of rapeseed varieties in France. We show that this trait is of interest at different levels of the value chain and for different markets. Nitrogen use efficiency improves farmers’ margins by reducing fertilizing costs or increasing yields. Nitrogen use efficiency also improves the GHG (greenhouse gas) balance of rapeseed used for biodiesel production and the image of edible rapeseed oil for consumers within the framework of specific labels. Finally, nitrogen use efficiency can also be seen as a trait that improves the protein content of rapeseed oilcake and, therefore, increases its value compared to competing sources of protein. After a detailed presentation of these different valuations, we provide current or possible measures that have been or could be implemented to encourage different actors in the sector to develop and diffuse this trait.


2013 ◽  
Vol 27 (9) ◽  
pp. 5280-5286 ◽  
Author(s):  
Javier Dufour ◽  
Jesús Arsuaga ◽  
Jovita Moreno ◽  
Hely Torrealba ◽  
Javier Camacho

2016 ◽  
Vol 14 (1) ◽  
pp. 445-451
Author(s):  
Aliakbar Roosta ◽  
Jafar Javanmardi ◽  
Elham Sadat Behineh

AbstractIn this study, a new approach is proposed to investigate the kinetics of sunflower oil and rapeseed oil transesterification in the presence of potassium hydroxide. Transesterification is a heterogeneous process which affected by a number of parameters, that are not readily available in the literature, such as mass transfer coefficients, partition coefficients, and specific surface area of the dispersed phase. However, under intense agitation condition, mass transfer restrictions may be neglected, and the two phases are supposed to remain in thermodynamic equilibrium, during the process. Therefore, a model was developed independent of the mass transfer coefficient and specific surface area, which is reliable for the intense agitation condition. According to the results, the model is valid at least for mixing rates over 500 rpm. The results of the model were used to study the effects of temperature, methanol-to-oil ratio, and catalyst concentration on the biodiesel conversion. Biodiesel production rate increases with increasing temperature, although rapeseed oil transesterification is more temperature dependent. The results show that the maximum amount of catalyst concentration is less than 1% (by weight); however, the optimum value depends on the operating temperature. The optimum value of the methanol-to-oil-ratio decreases with increasing temperature. Thus, at higher temperatures, less amount of methanol and catalyst are required, which leads to easier purification of biodiesel.


Fuel ◽  
2012 ◽  
Vol 97 ◽  
pp. 373-378 ◽  
Author(s):  
Fadjar Goembira ◽  
Kosuke Matsuura ◽  
Shiro Saka

2011 ◽  
Vol 88 (6) ◽  
pp. 2050-2055 ◽  
Author(s):  
Fengxian Qiu ◽  
Yihuai Li ◽  
Dongya Yang ◽  
Xiaohua Li ◽  
Ping Sun

Sign in / Sign up

Export Citation Format

Share Document