A new hybrid approach in selection of optimum establishment location of the biogas energy production plant

Author(s):  
Ali Bahadır Ceylan ◽  
Levent Aydın ◽  
Mustafa Nil ◽  
Hayati Mamur ◽  
İlker Polatoğlu ◽  
...  
2010 ◽  
Vol 72 ◽  
pp. 46-52 ◽  
Author(s):  
Laurent Royer ◽  
Stéphane Mathieu ◽  
Christophe Liebaut ◽  
Pierre Steinmetz

For energy production and also for the glass industry, finding new refractory alloys which could permit to increase the process temperatures to 1200°C or more is a permanent challenge. Chromium base alloys can be good candidates, considering the melting point of Cr itself, and also its low corrosion rate in molten glass. Two families of alloys have been studied for this purpose, Cr-Mo-W and Cr-Ta-X alloys (X= Mo, Si..). A finer selection of compositions has been done, to optimize their chemical and mechanical properties. Kinetics of HT oxidation by air, of corrosion by molten glass and also creep properties of several alloys have been measured up to 1250°C. The results obtained with the best alloys (Cr-Ta base) give positive indications as regards the possibility of their industrial use.


3 Biotech ◽  
2017 ◽  
Vol 7 (4) ◽  
Author(s):  
T. Selvankumar ◽  
C. Sudhakar ◽  
M. Govindaraju ◽  
K. Selvam ◽  
V. Aroulmoji ◽  
...  

2016 ◽  
Vol 44 (4) ◽  
pp. 1101-1110 ◽  
Author(s):  
Alistair V.W. Nunn ◽  
Geoffrey W. Guy ◽  
Jimmy D. Bell

A sufficiently complex set of molecules, if subject to perturbation, will self-organize and show emergent behaviour. If such a system can take on information it will become subject to natural selection. This could explain how self-replicating molecules evolved into life and how intelligence arose. A pivotal step in this evolutionary process was of course the emergence of the eukaryote and the advent of the mitochondrion, which both enhanced energy production per cell and increased the ability to process, store and utilize information. Recent research suggest that from its inception life embraced quantum effects such as ‘tunnelling’ and ‘coherence’ while competition and stressful conditions provided a constant driver for natural selection. We believe that the biphasic adaptive response to stress described by hormesis–a process that captures information to enable adaptability, is central to this whole process. Critically, hormesis could improve mitochondrial quantum efficiency, improving the ATP/ROS ratio, whereas inflammation, which is tightly associated with the aging process, might do the opposite. This all suggests that to achieve optimal health and healthy aging, one has to sufficiently stress the system to ensure peak mitochondrial function, which itself could reflect selection of optimum efficiency at the quantum level.


2021 ◽  
Vol 23 ◽  
pp. 594-612
Author(s):  
Atilgan Atilgan

With the increasing need for energy, energy studies to be obtained from waste gain importance. In this study, it has been tried to determine the amount of biogas energy that can be obtained from olive pomace (pirina), which is produced by processing oil olives. Numerical maps of pirina amounts and potential biogas energy values and location maps of the proposed pirina processing plant were created. The necessary calculations were made by comparing the obtained results with the relevant literature information. In the study, the current potential biogas energy amount was calculated, maps were created and the electricity and gasoline energy equivalent levels of this energy were tried to be calculated using the 2015-2019 data of the Mediterranean, Aegean and Marmara Regions. The total potential amount of pirina in the research area is 1853375.7 tons and the potential biogas energy amount that can be obtained is 33360762.4 MJ. Pirina, which is the production waste after pressing the olives for oil, can be used for energy production. By using pirina to obtain biogas energy, both the utilization of pirina and the development of the regions will be provided.


2008 ◽  
pp. 3085-3115
Author(s):  
Biren Shah ◽  
Karthik Ramachandran ◽  
Vijay Raghavan

Materialized view selection is one of the crucial decisions in designing a data warehouse for optimal efficiency. Static selection of views may materialize certain views that are not beneficial as the data and usage trends change over time. On the contrary, dynamic selection of views works better only for queries demanding a high degree of aggregation. These facts point to the need for a technique that combines the improved response time of the static approach and the automated tuning capability of the dynamic approach. In this article, we propose a hybrid approach for the selection of materialized views. The idea is to partition the collection of all views into a static and dynamic set such that views selected for materialization from the static set are persistent over multiple query (and maintenance) windows, whereas views selected from the dynamic set can be queried and/or replaced on the fly. Highly aggregated views are selected on the fly based on the query access patterns of users, whereas the more detailed static set of views plays a significant role in the efficient maintenance of the dynamic set of views and in answering certain detailed view queries. We prove that our proposed strategy satisfies the monotonicity requirements, which is essential in order for the greedy heuristic to deliver competitive solutions. Experimental results show that our approach outperforms Dynamat, a well-known dynamic view management system that is known to outperform optimal static view selection.


Sign in / Sign up

Export Citation Format

Share Document