scholarly journals Average leaf litter quality drives the decomposition of single-species, mixed-species and transplanted leaf litters for two contrasting tropical forest types in the Congo Basin (DRC)

2020 ◽  
Vol 77 (2) ◽  
Author(s):  
Benoît Cassart ◽  
Albert Angbonga Basia ◽  
Mathieu Jonard ◽  
Quentin Ponette
Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 738
Author(s):  
Henry B. Glick ◽  
Peter M. Umunay ◽  
Jean-Remy Makana ◽  
Sean C. Thomas ◽  
Jonathan D. Reuning-Scherer ◽  
...  

Patterns of structural change associated with monodominant tropical forest complexes have remained enigmatic for decades. Here, we extend previous efforts in presenting a longitudinal, local-scale analysis of forest dynamics in central Africa. Using four 10-ha census plots measured across three time periods (959,312 stems ≥1 cm DBH), we analyzed changes in a number of biometrical attributes for four distinct forest types capturing the developmental gradient from mixed species forest to Gilbertiodendron dewevrei-dominated forest. We modeled above-ground biomass (AGB), basal area (BA), and stem density across all species, and diameter at breast height (DBH), recruitment, and mortality for Gilbertiodendron dewevrei. We hypothesized that trends in these attributes are consistent with a slow spread of Gilbertiodendron dewevrei into adjacent mixed species forest. We identified statistically significant increases in AGB and BA across sites and positive, though nonsignificant, increases in AGB and BA for most forest types. DBH and relative recruitment increased significantly for Gilbertiodendron dewevrei stems, while relative mortality did not. When looking from mixed species to transitional to monodominant forest types, we found a statistically significant pattern of developmental aggradation and net expansion of monodominant forest. We do not attribute this to atmospheric forcing but to a combination of (a) landscape-scale recovery or response to widespread disturbance (primarily historical fires), (b) Gilbertiodendron dewevrei’s ectomycorrhizal association, and (c) Gilbertiodendron dewevrei’s exceptional stress tolerance traits.


2004 ◽  
Vol 61 (8) ◽  
pp. 1398-1409 ◽  
Author(s):  
Morten Vinther ◽  
Stuart A. Reeves ◽  
Kenneth R. Patterson

Abstract Fishery management advice has traditionally been given on a stock-by-stock basis. Recent problems in implementing this advice, particularly for the demersal fisheries of the North Sea, have highlighted the limitations of the approach. In the long term, it would be desirable to give advice that accounts for mixed-fishery effects, but in the short term there is a need for approaches to resolve the conflicting management advice for different species within the same fishery, and to generate catch or effort advice that accounts for the mixed-species nature of the fishery. This paper documents a recent approach used to address these problems. The approach takes the single-species advice for each species in the fishery as a starting point, then attempts to resolve it into consistent catch or effort advice using fleet-disaggregated catch forecasts in combination with explicitly stated management priorities for each stock. Results are presented for the groundfish fisheries of the North Sea, and these show that the development of such approaches will also require development of the ways in which catch data are collected and compiled.


1998 ◽  
Vol 6 (1) ◽  
pp. 1-12 ◽  
Author(s):  
M Francesca Cotrufo ◽  
Björn Berg ◽  
Werner Kratz

There is evidence that N concentration in hardwood leaf litter is reduced when plants are raised in an elevated CO2 atmosphere. Reductions in the N concentration of leaf litter have been found for tree species raised under elevated CO2, with reduction in N concentration ranging from ca. 50% for sweet chestnut (Castanea sativa) to 19% for sycamore (Acer platanoides). However, the effects of elevated CO2 on the chemical composition of litter has been investigated only for a limited number of species. There is also little information on the effects of increased CO2 on the quality of root tissues. If we consider, for example, two important European forest ecosystem types, the dominant species investigated for chemical changes are just a few. Thus, there are whole terrestrial ecosystems in which not a single species has been investigated, meaning that the observed effects of a raised CO2 level on plant litter actually has a large error source. Few reports present data on the effects of elevated CO2 on litter nutrients other than N, which limits our ability to predict the effects of elevated CO2 on litter quality and thus on its decomposability. In litter decomposition three separate steps are seen: (i) the initial stages, (ii) the later stages, and (iii) the final stages. The concept of "substrate quality," translated into chemical composition, will thus change between early stages of decomposition and later ones, with a balanced proportion of nutrients (e.g., N, P, S) being required in the early decomposition phase. In the later stages decomposition rates are ruled by lignin degradation and that process is regulated by the availability of certain nutrients (e.g., N, Mn), which act as signals to the lignin-degrading soil microflora. In the final stages the decomposition comes to a stop or may reach an extremely low decomposition rate, so low that asymptotic decomposition values may be estimated and negatively related to N concentrations. Studies on the effects of changes in chemical composition on the decomposability of litter have mainly been made during the early decomposition stages and they generally report decreased litter quality (e.g., increased C/N ratio), resulting in lower decomposition rates for litter raised under elevated CO2 as compared with control litter. No reports are found relating chemical changes induced by elevated CO2 to litter mass-loss rates in late stages. By most definitions, at these stages litter has turned into humus, and many studies demonstrated that a raising of the N level may suppress humus decomposition rate. It is thus reasonable to speculate that a decrease in N levels in humus would accelerate decomposition and allow it to proceed further. There are no experimental data on the long-term effect of elevated CO2 levels, and a decrease in the storage of humus and nutrients could be predicted, at least in temperate and boreal forest systems. Future works on the effects of elevated CO2 on litter quality need to include studies of a larger number of nutrients and chemical components, and to cover different stages of decomposition. Additionally, the response of plant litter quality to elevated CO2 needs to be investigated under field conditions and at the community level, where possible shifts in community composition (i.e., C3 versus C4 ; N2 fixers versus nonfixers) predicted under elevated CO2 are taken into account.Key words: climate change, substrate quality, carbon dioxide, plant litter, chemical composition, decomposition.


2020 ◽  
Vol 4 ◽  
Author(s):  
Lidia Garrido-Sanz ◽  
Miquel Àngel Senar ◽  
Josep Piñol

Amplicon metabarcoding is an established technique to analyse the taxonomic composition of communities of organisms using high-throughput DNA sequencing, but there are doubts about its ability to quantify the relative proportions of the species, as opposed to the species list. Here, we bypass the enrichment step and avoid the PCR-bias, by directly sequencing the extracted DNA using shotgun metagenomics. This approach is common practice in prokaryotes, but not in eukaryotes, because of the low number of sequenced genomes of eukaryotic species. We tested the metagenomics approach using insect species whose genome is already sequenced and assembled to an advanced degree. We shotgun-sequenced, at low-coverage, 18 species of insects in 22 single-species and 6 mixed-species libraries and mapped the reads against 110 reference genomes of insects. We used the single-species libraries to calibrate the process of assignation of reads to species and the libraries created from species mixtures to evaluate the ability of the method to quantify the relative species abundance. Our results showed that the shotgun metagenomic method is easily able to set apart closely-related insect species, like four species of Drosophila included in the artificial libraries. However, to avoid the counting of rare misclassified reads in samples, it was necessary to use a rather stringent detection limit of 0.001, so species with a lower relative abundance are ignored. We also identified that approximately half the raw reads were informative for taxonomic purposes. Finally, using the mixed-species libraries, we showed that it was feasible to quantify with confidence the relative abundance of individual species in the mixtures.


2009 ◽  
Vol 24 (6) ◽  
pp. 1381-1392 ◽  
Author(s):  
Jonathan M. Adams ◽  
Yangjian Zhang ◽  
Md. Basri ◽  
Noraini Shukor

2000 ◽  
Vol 31 (3-4) ◽  
pp. 288-293 ◽  
Author(s):  
J. Dighton ◽  
A.S. Morale Bonilla ◽  
R. A. Jimînez-Nûñ ◽  
N. Martînez

2021 ◽  
Author(s):  
Inês Vieira ◽  
Hans Verbeeck ◽  
Félicien Meunier ◽  
Marc Peaucelle ◽  
Lodewijk Lefevre ◽  
...  

<p>Tropospheric ozone is a greenhouse gas, and high tropospheric ozone levels can directly impact plant growth and human health. In the Congo basin, simulations predict high ozone concentrations, induced by high ozone precursor (VOC and NOx) concentrations and high solar irradiation, which trigger the chemical reactions that form ozone. Additionally, biomass burning activities are widespread on the African continent, playing a crucial role in ozone precursor production. How these potentially high ozone levels impact tropical forest primary productivity remains poorly understood, and field-based ozone monitoring is completely lacking from the Congo basin. This study intends to show preliminary results from the first full year of in situ measurements of ozone concentration in the Congo Basin (i.e., Yangambi, Democratic Republic of the Congo). We show the relationships between meteorological variables (temperature, precipitation, radiation, wind direction and speed), fire occurrence (derived from remote sensing products) and ozone concentrations at a new continuous monitoring station in the heart of the Congo Basin. First results show higher daily mean ozone levels (e.g. 43 ppb registered in January 2020) during dry season months (December-February). We identify a strong diurnal cycle, where minimum values of ozone (almost near zero) are registered during night hours, and maximum values (near 100 ppb) are registered during the daytime. We also verify that around 2.5% of the ozone measurements exceeds a toxicity level (potential for ozone to damage vegetation) of 40 ppb. In the longer term, these measurements should improve the accuracy of future model simulations in the Congo Basin and will be used to assess the impact of ozone on the tropical forest’s primary productivity.</p>


2018 ◽  
Vol 39 (3) ◽  
pp. 152 ◽  
Author(s):  
Enrico Marsili ◽  
Staffan Kjelleberg ◽  
Scott A Rice

Metals are used in most marine infrastructures for energy extraction and production. Metal corrosion is a serious concern, due to the environmental, safety, and replacement costs associated with it. Microbially influenced corrosion (MIC) contributes to the overall corrosion process, through several chemical, electrochemical and biochemical mechanisms, particularly in the presence of microbial biofilms. In this short article, we discuss briefly recent advances in MIC research, comparing corrosion in single species and mixed species biofilms, and outline possible strategies for biofilm and corrosion control.


Zootaxa ◽  
2019 ◽  
Vol 4571 (1) ◽  
pp. 138
Author(s):  
MAHSA HAKIMARA ◽  
KAMBIZ MINAEI ◽  
SABER SADEGHI ◽  
LAURENCE MOUND

Of the 16 species listed in the genus Liophloeothrips (ThripsWiki 2018), 13 are known only from India, and all of these are phytophagous with some inducing galls in various plant families (Tyagi & Kumar 2011). However, the biology of the type species, L. glaber, as well as that of the other two species, L. hungaricus and L. pulchrisetis, remains in doubt. Each of these three species is from Europe, with L. pulchrisetis known from a single female, L. glaber from two specimens, and hungaricus recorded from Hungary, Finland and Iran on a very few individuals (Minaei & Mound 2014). The record of L. hungaricus from Iran was published without any information concerning the locality, date of collection, or number of specimens (Mortazawiha 1995). However, Minaei and Mound (2014) pointed out that the slide label data of L. hungaricus specimens from Europe suggested that this species is associated with the bark of certain Salicaceae. Moreover, they indicated the possibility that the three names might actually represent a single species, although the male of L. glabrus has a sternal pore plate whereas this is apparently absent in hungaricus. Given the few known specimens, it is not possible to know if these thrips live under bark and feed on fungal hyphae, or if the few specimens collected were actually leaf-feeders that were sheltering under bark. In this paper, a new species of the genus is described from southern Iran, based on both sexes. These specimens were extracted from leaf litter using a Berlese funnel, thus again it is not possible to be certain if the species is part of the community of fungus-feeding litter thrips, or if the specimens were merely sheltering. 


2019 ◽  
Vol 20 ◽  
pp. e00722 ◽  
Author(s):  
Mohammad Saiful Mansor ◽  
Fasihah Zarifah Rozali ◽  
Nurul Ashikin Abdullah ◽  
Shukor Md Nor ◽  
Rosli Ramli

Sign in / Sign up

Export Citation Format

Share Document