Highly simple and visual colorimetric detection of Brucella melitensis genomic DNA in clinical samples based on gold nanoparticles

2015 ◽  
Vol 12 (9) ◽  
pp. 1569-1576 ◽  
Author(s):  
Naghmeh Sattarahmady ◽  
Zahra Kayani ◽  
Hossein Heli
The Analyst ◽  
2021 ◽  
Author(s):  
Almas Shamaila Mohammed ◽  
Aniket Balapure ◽  
Mahammad Nanne Khaja ◽  
Ramakrishnan Ganesan ◽  
Jayati Ray Dutta

An Au NP based facile strategy for the rapid, early-stage, and sensitive detection of HCV RNA in clinical samples which avoids thiol tagging to the antisense oligonucleotide and expensive infrastructure is presented.


2013 ◽  
Vol 49 (1) ◽  
pp. 51-53 ◽  
Author(s):  
Hua Deng ◽  
Xu Zhang ◽  
Anil Kumar ◽  
Guozang Zou ◽  
Xiaoning Zhang ◽  
...  

2021 ◽  
Vol 7 (5) ◽  
pp. eabc7802
Author(s):  
Kai Shi ◽  
Shiyi Xie ◽  
Renyun Tian ◽  
Shuo Wang ◽  
Qin Lu ◽  
...  

Artificial nucleic acid circuits with precisely controllable dynamic and function have shown great promise in biosensing, but their utility in molecular diagnostics is still restrained by the inability to process genomic DNA directly and moderate sensitivity. To address this limitation, we present a CRISPR-Cas–powered catalytic nucleic acid circuit, namely, CRISPR-Cas–only amplification network (CONAN), for isothermally amplified detection of genomic DNA. By integrating the stringent target recognition, helicase activity, and trans-cleavage activity of Cas12a, a Cas12a autocatalysis-driven artificial reaction network is programmed to construct a positive feedback circuit with exponential dynamic in CONAN. Consequently, CONAN achieves one-enzyme, one-step, real-time detection of genomic DNA with attomolar sensitivity. Moreover, CONAN increases the intrinsic single-base specificity of Cas12a, and enables the effective detection of hepatitis B virus infection and human bladder cancer–associated single-nucleotide mutation in clinical samples, highlighting its potential as a powerful tool for disease diagnostics.


2021 ◽  
Author(s):  
Yiren Cao ◽  
Jinjun Wu ◽  
Bo Pang ◽  
Hongquan Zhang ◽  
X. Chris Le

The trans-cleavage activity of the target-activated CRISPR-Cas12a liberated an RNA crosslinker from a molecular transducer, which facilitated assembly of gold nanoparticles. Integration of the molecular transducer with isothermal amplification and...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhikun Zhang ◽  
Xiaojie Ye ◽  
Qingqing Liu ◽  
Yumin Liu ◽  
Runjing Liu

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Bruna de Oliveira Coelho ◽  
Heloisa Bruna Soligo Sanchuki ◽  
Dalila Luciola Zanette ◽  
Jeanine Marie Nardin ◽  
Hugo Manuel Paz Morales ◽  
...  

Abstract Background SARS-CoV-2 Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) colorimetric detection is a sensitive and specific point-of-care molecular biology technique used to detect the virus in only 30 min. In this manuscript we have described a few nuances of the technique still not properly described in the literature: the presence of three colors clusters; the correlation of the viral load with the color change; and the importance of using an internal control to avoid false-negative results. Methods To achieve these findings, we performed colorimetric RT-LAMP assays of 466 SARS-CoV-2 RT-qPCR validated clinical samples, with color quantification measured at 434 nm and 560 nm. Results First we determinate a sensitivity of 93.8% and specificity of 90.4%. In addition to the pink (negative) and yellow (positive) produced colors, we report for the first time the presence of an orange color cluster that may lead to wrong diagnosis. We also demonstrated using RT-qPCR and RT-LAMP that low viral loads are related to Ct values > 30, resulting in orange colors. We also demonstrated that the diagnosis of COVID-19 by colorimetric RT-LAMP is efficient until the fifth symptoms day when the viral load is still relatively high. Conclusion This study reports properties and indications for colorimetric RT-LAMP as point-of-care for SARS-CoV-2 diagnostic, reducing false results, interpretations and optimizing molecular diagnostics tests application.


Sign in / Sign up

Export Citation Format

Share Document