scholarly journals Adsorption kinetic models for the removal of Cu(II) from aqueous solution by clay liners in landfills

2016 ◽  
Vol 13 (4) ◽  
pp. 1123-1130 ◽  
Author(s):  
G. Venkatesan ◽  
V. Rajagopalan
2018 ◽  
Author(s):  
yongson hong ◽  
Kye-Ryong Sin ◽  
Jong-Su Pak ◽  
Chol-Min Pak

<p><b>In this paper, the deficiencies and cause of previous adsorption kinetic models were revealed, new adsorption rate equation has been proposed and its validities were verified by kinetic analysis of various experimental data.</b> <b>This work is a new view on the adsorption kinetics rather than a comment on the previous adsorption papers.</b></p>


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Alvaro Ruíz-Baltazar ◽  
Rodrigo Esparza ◽  
Maykel Gonzalez ◽  
Gerardo Rosas ◽  
Ramiro Pérez

This study is aimed at investigating the structural and morphological characterization of natural and modified zeolite obtained from the state of Oaxaca (Mexico). Iron nanoparticles were used for the zeolite modification. The iron nanoparticles were loaded on the zeolite surface by homogeneous nucleation. Adsorption kinetic models of pseudo first and second order were surveyed. The characterization of pristine and modified zeolite was performed by Fourier transform infrared (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). From the results, three main phases were identified: clinoptilolite, mordenite, and feldspar. We could also determine the adsorption capacity of the zeolites by means of adsorption kinetic models.


2011 ◽  
Vol 364 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Raul Ocampo-Perez ◽  
Roberto Leyva-Ramos ◽  
Jovita Mendoza-Barron ◽  
Rosa M. Guerrero-Coronado

2017 ◽  
Vol 6 (1) ◽  
pp. 148-156
Author(s):  
P. Indhumathi ◽  
S. Sathiyaraj ◽  
U. S. Shoba ◽  
P. S. Syed Shabudeen ◽  
C. Jayabalakrishnan

Adsorption is a unique process for the removal of pollutants from water and wastewater since the process is cost effective, easily adoptable and environmentally compatible. The micro algae are a promising way to produce a useful adsorbent for Thorium (VI) removal from aqueous solution. The specific surface area of the microalgae was determined and its properties studied by scanning electron microscopy (SEM). Adsorptive removal of Thorium (VI) from aqueous solution on micro algae has been studied under varying conditions of agitation time, metal ion concentration, adsorbent dose and pH to assess the kinetic and equilibrium parameters. Adsorption equilibrium was obtained in 120 min for 20 to 120 mg/L of Thorium (VI) concentrations. The Langmuir, Freundlich, Temkin, Redlich-Peterson isotherm models, kinetic models and thermodynamic models were found to provide an excellent fitting of the adsorption data. The adsorption capacity of thorium 91.73% maximum percent removal in thorium at pH 3. This adsorbent was found to be effective and economically attractive.


2015 ◽  
Vol 56 (2) ◽  
pp. 179-190 ◽  
Author(s):  
Aleksandra Porjazoska-Kujundziski ◽  
Liljana Markovska ◽  
Verka Meshko

Sign in / Sign up

Export Citation Format

Share Document