isotherm and kinetic models
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 23)

H-INDEX

6
(FIVE YEARS 3)

2021 ◽  
Vol 13 (23) ◽  
pp. 13169
Author(s):  
Maria Martha Marthina de Wet ◽  
Hendrik Gideon Brink

In this study, the Pb(II) adsorption capabilities of the heavy metal tolerant strain of fungus, Aspergillus piperis, were studied. This study involved finding optimal growth conditions using a plating technique, and optimal adsorption conditions using submerged fermentation and fractional factorial experimental design. The adsorption behaviour was then elucidated using isotherm and kinetic models, of which the one surface Langmuir isotherm provided the best fit, with a maximum predicted adsorption capacity of 275.82 mg g−1. The kinetic models suggested that internal mass transfer is the driving force behind the reaction rate. After adsorption, biomass surface characterisation was undertaken using FESEM, EDS, and ATR-FTIR to explain observations. The system was characterised by a cation exchange mechanism with strong carboxyl and organophosphorus group interactions. This study demonstrates that due to the ease of propagation and high adsorption capacity, this locally sourced fungal strain is an ideal adsorbent for industrial Pb(II) bioremediation.


2021 ◽  
Author(s):  
Suhair Bani-Atta

Abstract Seeds powder of Foeniculum vulgare (FVES) was used to prepare a novel adsorbent, the new adsorbent was characterized and its ability to eliminate potassium permanganate (KMnO 4 ) was examined. The impact of KMnO 4 concentration, adsorbent dose, contact temperature, contact time, and solution pH on the adsorption performance was also investigated. The experimental data of this adsorption was analyzed by different kinetic and isotherm models. As Constants of thermodynamic ΔG°, ΔH°, and ΔS° have been also evaluated. Surface area, pore volume, and pore size of the FVESP adsorbent were determined as 0.6806 m 2 .g -1 , 0.00215 cm 3 .g -1 , and 522.063 Å, as pH ZPC of Ox- FVESP was stated to be 7.2. The R 2 values obtained from applying different isotherm and kinetic models (0.999 and 0.996) showed that the adsorption performance of KMnO 4 follows the Langmuir and Pseudo 2 nd order models. Furthermore, high adsorption capacities of 1111.11, 1250.00, and 1428.57 (mg/g) were achieved at three temperatures that were used in this study. Constants of thermodynamic ΔG°, ΔH°, and ΔS° values indicate chemical and spontaneous adsorption at the adsorbent surface.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2789
Author(s):  
Ali Q. Alorabi ◽  
Mallick Shamshi Hassan ◽  
Mohammad Mahboob Alam ◽  
Sami A. Zabin ◽  
Nawaf I. Alsenani ◽  
...  

This investigation aimed at evaluating the efficiency of micro and nanoclays as a low-cost material for the removal of crystal violet (CV) dye from an aqueous solution. The impacts of various factors (contact time, pH, adsorbent dosage, temperature, initial dye concentration) on the adsorption process have been taken into consideration. Six micro and nanoclay samples were obtained by treating clay materials collected from different locations in the Albaha region, Saudi Arabia. Out of the six tested micro and nanoclays materials, two (NCQ1 and NCQ3) were selected based on the highest adsorption efficiency for complete experimentation. The morphology and structure of the selected micro and nanoclay adsorbents were characterized by various techniques: SEM-EDX, FTIR, XRF, XRD, and ICP-MS. The XRF showed that the main oxides of both nanoclays were SiO2, Al2O3, Fe2O3, K2O, CaO, and MgO, and the rest were impurities. All the parameters affecting the adsorption of CV dye were optimized in a batch system, and the optimized working conditions were an equilibrium time of 120 min, a dose of 30 mg, a temperature of 25 °C, and an initial CV concentration of 400 mg/L. The equilibrium data were tested using nonlinear isotherm and kinetic models, which showed that the Freundlich isotherm and pseudo-second-order kinetics gave the best fit with the experimental data, indicating a physico-chemical interaction occurred between the CV dye and both selected micro and nanoclay surfaces. The maximum adsorption capacities of NCQ1 and NCQ3 adsorbents were 206.73 and 203.66 mg/g, respectively, at 25 °C. The thermodynamic factors revealed that the CV dye adsorption of both micro and nanoclays was spontaneous and showed an exothermic process. Therefore, the examined natural micro and nanoclays adsorbents are promising effective adsorbents for the elimination of CV dye from an aqueous environment.


2021 ◽  
Vol 21 (5) ◽  
pp. 1148
Author(s):  
Hawraa Kassem Hami ◽  
Ruba Fahmi Abbas ◽  
Shireen Abdulmohsin Azeez ◽  
Nedaa Ibrahim Mahdi

The current study focused on utilizing cobalt oxide to eliminate hazardous Eriochrome Black T (EBT) dye. The impact of pH (2, 4, 7, 8, and 10) and temperature (45, 50, and 55 °C) was examined for EBT removal. The results show that the maximum sorption occurred at pH = 2 and that the removal percentage increased with increasing temperature. Five non-linear regression methods were used to predict the best isotherm and kinetic models. A coefficient of non-determination, K2, was very helpful for selecting the RMSD function as a preferable error function among the five methods. Isothermal models to illustrate equilibrium sorption information, the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich models were used. The results showed that the Langmuir model (R2 = 0.99) was the most favorable, indicating monolayer sorption of EBT occurred. The kinetics models were analyzed using pseudo-first-order and pseudo-second-order whereas the sorption information was well described by the pseudo-second-order model (R2 = 0.99). The results of the thermodynamic study appeared that the adsorption of EBT was endothermic, feasible, spontaneous, and physical adsorption.


Textiles ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 361-375
Author(s):  
Maimuna Akter ◽  
Fahim Bin Abdur Rahman ◽  
M. Zainal Abedin ◽  
S M Fijul Kabir

Disposal of reactive dye contaminants in surface waters causes serious health risks to the aquatic living bodies and populations adjacent to the polluted water sources. This study investigated the applicability of banana peels to remediate water contamination with reactive dyes used in the textile industry. A set of batch experiments was conducted using a standard dye solution to determine optimum adsorption parameters, and these parameters were used for the removal of dyes from actual wastewater. Fitting experimental data into the isotherm and kinetic models suggested monolayer dye adsorption with chemisorption rate-limiting step. The maximum adsorption found from modeling results was 28.8 mg/g. Fourier transformed infrared (FTIR) spectra revealed the existence of hydroxyl, amine and carboxylic groups, contributing to high adsorption of dye molecules onto the adsorbent surface. About 93% of the dyes from the standard solution were removed at optimum conditions (pH—7.0, initial dye concentration—100 mg/L, contact time—60 min, and adsorbent dose—0.5 g) while this value was 84.2% for industrial textile wastewater. This difference was mainly attributed to the composition difference between the solutions. However, the removal efficiency for actual wastewater is still significant, indicating the high potentiality of banana peel removing dyes from textile effluent. Furthermore, desorption studies showed about 95% of banana peel can be recovered with simple acid-base treatment.


2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Asha Singh ◽  
Sunil Kumar ◽  
Vishal Panghal

AbstractThis study evaluated the adsorption of Cr6+ from aqueous solution using dead biomass of aquatic plants Salvinia molesta (Kariba weed) and Typha latifolia (broadleaf cattail). The batch experiments were carried out to study the effects of pH, adsorbent dose, initial metal concentration, contact time, agitation speed in rotation per minute (rpm), and temperature. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterize the adsorbent and analyze the functional groups and morphology of the adsorbent, respectively. The hydroxyl and amine groups were the main functional groups involved in the adsorption. Both adsorbents showed good results at pH 1, metal concentration of 20 mg/L for Cr6+ removal, and adsorption equilibrium was attained within 60 min with 150 rpm at 25 °C. The adsorption rate obtained was above 95% for both the adsorbents at a dose of 0.150 g for S. molesta and 0.8 g for T. latifolia. Isotherm and kinetic models were applied on the adsorption data. The monolayer adsorption capacity (qm) was found to be 33.33 mg/g for S. molesta and 10.30 mg/g for T. latifolia. The Langmuir isotherm was better fitted to S. molesta, while the Freundlich isotherm was better fitted to T. latifolia. It was reported that the pseudo-second-order model (R2 = 0.999) was better fitted to the adsorption data for both the adsorbents. The thermodynamic study was also conducted and found the adsorption process was exothermic and spontaneous. Results revealed the good adsorption potential of S. molesta and T. latifolia, and they can be used for the removal of hexavalent chromium.


2021 ◽  
Vol 22 (15) ◽  
pp. 8175
Author(s):  
Justyna Ulatowska ◽  
Łukasz Stala ◽  
Izabela Polowczyk

Good sorption properties and simple synthesis route make schwertmannite an increasingly popular adsorbent. In this work, the adsorption properties of synthetic schwertmannite towards Cr(VI) were investigated. This study aimed to compare the properties and sorption performance of adsorbents obtained by two methods: Fe3+ hydrolysis (SCHA) and Fe2+ oxidation (SCHB). To characterise the sorbents before and after Cr(VI) adsorption, specific surface area, particle size distribution, density, and zeta potential were determined. Additionally, optical micrographs, SEM, and FTIR analyses were performed. Adsorption experiments were performed in varying process conditions: pH, adsorbent dosage, contact time, and initial concentration. Adsorption isotherms were fitted by Freundlich, Langmuir, and Temkin models. Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and liquid film diffusion models were used to fit the kinetics data. Linear regression was used to estimate the parameters of isotherm and kinetic models. The maximum adsorption capacity resulting from the fitted Langmuir isotherm is 42.97 and 17.54 mg·g−1 for SCHA and SCHB. Results show that the adsorption kinetics follows the pseudo-second-order kinetic model. Both iron-based adsorbents are suitable for removing Cr(VI) ions from aqueous solutions. Characterisation of the adsorbents after adsorption suggests that Cr(VI) adsorption can be mainly attributed to ion exchange with SO42− groups.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alaa El Din Mahmoud ◽  
Khairia M. Al-Qahtani ◽  
Sahab O. Alflaij ◽  
Salma F. Al-Qahtani ◽  
Faten A. Alsamhan

AbstractEnvironmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route without using hazardous chemicals. Hence, the extracts of mint leaves and orange peels were utilized as reducing agents to synthesize CuO NPs-1 and CuO NPs-2, respectively. The synthesized CuO NPs nanoparticles were characterized using scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), BET surface area, Ultraviolet–Visible spectroscopy (UV–Vis), and Fourier Transform Infrared Spectroscopy (FT-IR). Various parameters of batch experiments were considered for the removal of Pb(II), Ni(II), and Cd(II) using the CuO NPs such as nanosorbent dose, contact time, pH, and initial metal concentration. The maximum uptake capacity (qm) of both CuO NPs-1 and CuO NPs-2 followed the order of Pb(II) > Ni(II) > Cd(II). The optimum qm of CuO NPs were 88.80, 54.90, and 15.60 mg g−1 for Pb(II), Ni(II), and Cd(II), respectively and occurred at sorbent dose of 0.33 g L−1 and pH of 6. Furthermore, isotherm and kinetic models were applied to fit the experimental data. Freundlich models (R2 > 0.97) and pseudo-second-order model (R2 > 0.96) were fitted well to the experimental data and the equilibrium of metal adsorption occurred within 60 min.


2021 ◽  
Vol 63 (2) ◽  
pp. 7-12
Author(s):  
Van Phuc Dinh ◽  

Pomelo fruit peel, an organic waste, was utilised as a biosorbent to remove Ni(II) from aqueous solutions. Some major factors influencing Ni(II) uptake such as pH, adsorption time, and initial Ni(II) concentration were examined. Several isotherm and kinetic models including the Langmuir, Freundlich, Sips, pseudo-first-order, pseudo-second-order, and intra-diffusion models were fit to the experimental data. Results showed that the Ni(II) uptake obtained an equilibrium at pH=6 after 80 min at 303 K. The Sips isotherm model described the Ni(II) adsorption better than other models and the monoadsorption capacity calculated from the Langmuir model was 9.67 mg/g. The adsorption of Ni(II) followed pseudo-second-order kinetic models with three stages.


Macromol ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 130-154
Author(s):  
Efstathios V. Liakos ◽  
Maria Lazaridou ◽  
Georgia Michailidou ◽  
Ioanna Koumentakou ◽  
Dimitra A. Lambropoulou ◽  
...  

Chitin is mentioned as the second most abundant and important natural biopolymer in worldwide scale. The main sources for the extraction and exploitation of this natural polysaccharide polymer are crabs and shrimps. Chitosan (poly-β-(1 → 4)-2-amino-2-deoxy-d-glucose) is the most important derivative of chitin and can be used in a wide variety of applications including cosmetics, pharmaceutical and biomedical applications, food, etc., giving this substance high value-added applications. Moreover, chitosan has applications in adsorption because it contains amino and hydroxyl groups in its molecules, and can thus contribute to many possible adsorption interactions between chitosan and pollutants (pharmaceuticals/drugs, metals, phenols, pesticides, etc.). However, it must be noted that one of the most important techniques of decontamination is considered to be adsorption because it is simple, low-cost, and fast. This review emphasizes on recently published research papers (2013–2021) and briefly describes the chemical modifications of chitosan (grafting, cross-linking, etc.), for the adsorption of a variety of emerging contaminants from aqueous solutions, and characterization results. Finally, tables are depicted from selected chitosan synthetic routes and the pH effects are discussed, along with the best-fitting isotherm and kinetic models.


Sign in / Sign up

Export Citation Format

Share Document