Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer

2017 ◽  
Vol 15 (2) ◽  
pp. 405-414 ◽  
Author(s):  
W. Gwenzi ◽  
T. J. Nyambishi ◽  
N. Chaukura ◽  
N. Mapope
2016 ◽  
Vol 20 (1) ◽  
pp. 37 ◽  
Author(s):  
Lili Handayani ◽  
Gunawan Djajakirana ◽  
. Darmawan ◽  
Canecio Peralta Munoz

The low-efficiency problem in fertilizer application can be overcome by controlling fertilizer solubility, i.e. by rendering the fertilizer to be released gradually; such material is also known as slow-release fertilizer (SRF). This research was aimed to formulate SRF by coating technique using acrylic and chitosan as the coating material, and to evaluate fertilizer resistance to too fast disintegration, and rate of nutrient release method. The results demonstrated that fertilizer formulation containing  N, P, K, Fe, Cu, and Zn with granulation technique yielded 74% of granules with 2-5 mm in diameter. The SRFs (formulated fertilizer with acrylic or chitosan coating) were more resistant to water pounding than non-SRF. Furthermore, shaking test with distilled water or 2% citric acid, or by percolation test with distilled water showed that the SRFs had lower nutrient solubility than the non-SRFs. The results of shaking test also specifically indicated that coating with acrylic made the fertilizer more resistant to the citric acid,suggesting that this coating material would be more suitable in acidic soils. The SRFs formulated with the addition of chitosan during blending of micronutrients prior to mixing with macronutrients, granulation, and final coating exhibited lower nutrient solubility than the SRFs without the pre-coating chitosan addition. [How to Cite: Lili H, G Djajakirana, Darmawan, and CP Munoz. 2015. Slow- Release Fertilizer Formulation Using Acrylic and Chitosan Coating. J Trop Soils 19: 37-45. Doi: 10.5400/jts.2015.20.1.37][Permalink/DOI: www.dx.doi.org/10.5400/jts.2015.20.1.37]


2012 ◽  
Vol 518-523 ◽  
pp. 4745-4748
Author(s):  
Qing Wang ◽  
Sha Chen ◽  
Pei Guang Zhao ◽  
Yu Cao ◽  
Long Fei Zhu ◽  
...  

A kind of double-coated environmental friendly fertilizer was prepared by urea as a core, well-mixed keratin and oxidation starch as an inner coating, and superabsorbent polymer as the outer coating. The influence of water absorbency, water retention, and the slow-release behavior of the study fertilizer were investigated. 0.01M CaCl2 immersion extraction and Kjeldahl digestion method were used to measure the content of nitrogen. And the result showed that the nutrient release was 72wt% on the thirtieth day. This result corresponded with the standard of slow release fertilizers of the Committee of European Normalization (CEN) [1]. Keratin and oxidation starch were biodegradable polymer and nontoxic. Both the properties of the materials and the result of the slow-release behavior suggested a new kind of excellent, environmental friendly, slow-release fertilizer.


<em>Abstract.</em>—A solid briquette fertilizer for use in the Pacific Northwest streams and elsewhere was identified from a variety of slow-release formulations (26 were tested with varying N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O ratios and binders) using indoor trough and controlled field experiments. The use of a slow-release fertilizer is an innovative method for adding inorganic nutrients to nutrientpoor (oligotrophic) streams to increase autotrophic production and aid in the restoration of salmonid populations. A series of indoor trough experiments demonstrated that the majority of samples containing binders of molasses, hydrated lime, vegetable oil, bentonite, starch, acrawax, candle wax, and Daratak® XB-3631 (unpolymerized Saran™) dissolved too slowly. The fastest dissolution rates occurred with fertilizer briquettes having no binder or vegetable oil. Further trough and field studies using fertilizer with no binder and vegetable oil as binder examined the effects of varying N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O ratios. Dissolution rates were varied by using different percentages of magnesium ammonium phosphate (MagAmP; its formula 7:40:0 N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O) and urea (46:0:0). Optimal continual nutrient release for a period of four months was achieved with a fertilizer formulation of 17:30:0 (percent by weight N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O), with a ratio of 75% MagAmP to 25% urea, and containing no binder. The dissolution rate for this product ranged from 4.6% to 6.6% per week (for field and trough experiments, respectively) in water of 0.15 m/s average velocity. These studies indicate that a slow-release fertilizer product can be manufactured to last approximately four months when applied in the spring to stimulate autotrophic production in nutrient deficient streams, thereby increasing forage and salmonid production.


2014 ◽  
Vol 26 (17) ◽  
pp. 5750-5754
Author(s):  
Zhi-Wen Chen ◽  
Yan-Nan Sun ◽  
Jie Li ◽  
Qing Zhang ◽  
Hui-Shi Du

2014 ◽  
Vol 625 ◽  
pp. 830-833 ◽  
Author(s):  
Zahid Majeed ◽  
Nur Kamila Ramli ◽  
Nurlidia Mansor ◽  
Zakaria Man

Biopolymers and their modified blends are naturally biodegradable materials being intensively used in control nutrient release formulations. Material biodegradability varies with thickness which further effect natural decay when applied in soil. Preliminary study was conducted for a urea-nitrogen incorporated slow release fertilizer (SRF) prepared with 0.27mm, 0.54mm and 1.03mm thickness. The starch biodegradation was decreased with increased in thickness both in non-sterile flooded soil (NSF) and sterile flooded soil (SF). NSF soil data was corrected with SF soil (as control) showed improved exponential decay constant and half-life estimates compared to NSF soil only. Study concludes that SRF thickness is important parameter increases half-life and reduces starch biodegradability in SRF.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2082
Author(s):  
Yit Leng Lee ◽  
Osumanu Haruna Ahmed ◽  
Samsuri Abdul Wahid ◽  
Mohamadu Boyie Jalloh ◽  
Adiza Alhassan Muzah

Blending fertilizer with biochar followed by densification to make it into a tablet can enhance the adsorption of fertilizer on the biochar surface and reduce the nutrient loss during handling. However, the nutrient release and ammonia volatilization from biochar-blended fertilizer with and without densification are not well understood. The objectives of this study were to determine the nutrient release and ammonia volatilization from an acid soil applied with biochar-blended NPK fertilizer with and without densification. The nutrient release of biochar-blended NPK was determined using water incubation for 30 days, whereas daily loss of ammonia was measured using a closed dynamic air flow system for 10 days. The densified biochar-blended NPK caused stronger physical binding of the nutrients within the tablet in addition to stronger chemical bondings between the nutrients with the biochar’s functional groups. As a result, nutrient release in the water incubation from the biochar-blended NPK fertilizer tablet was slower. However, blending the biochar with the NPK fertilizer increased soil ammonia volatilization relative to the NPK fertilizer alone. This demonstrates that the biochar-blended fertilizer tablet has the potential to serve as a slow release fertilizer for crop cultivation.


2017 ◽  
Vol 11 (1) ◽  
pp. 50-62 ◽  
Author(s):  
Rajendran Mala ◽  
Ruby Selvaraj ◽  
Vidhya Sundaram ◽  
Raja Rajan ◽  
Uma Gurusamy

Sign in / Sign up

Export Citation Format

Share Document