kjeldahl digestion
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 3)

H-INDEX

20
(FIVE YEARS 0)

2021 ◽  
Vol 8 (2) ◽  
pp. 62-74
Author(s):  
L. Vecherska ◽  
V. Liubych ◽  
L. Relina ◽  
O. Golik ◽  
V. Suchkova ◽  
...  

Aim. To explore sources of high groats properties among the genetic diversity of emmer and related species. Methods. Biochemical: The protein content was determined by Kjeldahl digestion; the starch content – by infrared spectroscopy. Technological: the vitreousness was determined by cutting 100 caryopses and expressed as percent- ages. The hull content, expressed in percent, was estimated as the ratio of hulled caryopses to the total of fully threshed ones. The gluten content and quality were assessed by manual washing-out. The hardness was determined on a YPD-300 hardness tester (Ltpm China) as the force in newtons required for caryopsis destruction. Emmer groats were obtained on a laboratory peeler UShZ-1. The groats properties were evaluated according to the method described in a utility model patent No. 129205. Statistical: the significance of differences between accessions was assessed using the Mann-Whitney test for small samples with unknown distribution. Two-factor analysis of vari- ance considered 2 factors – genotype and year conditions. Pearson’s test was used in the correlation analysis. The variability of traits was assessed by the coefficient of variation (CV). Results. The yields of emmer and durum wheat accessions and varieties as well as lines derived from emmer-wheat hybrids were measured and analyzed in 2016–2019. The yields of most emmer accessions (except for T. timopheevii) were similar to that of the check em- mer variety Holikovska (286 ± 15 g/m2). The highest contents of protein and gluten were found in T. timopheevii (18.1 ± 0.4 % and 40.5 ± 1.8 %, respectively), Triticum durum Desf. var. falcatomelanopus Jakubz. & Filat. (17.5 ± ± 1.0 % and 40.4 ± 1.4 %), autochthonous variety Polba 3 (16.8 ± 0.1 % and 36.9 ± 1.1 %), and line 10–139 (14.8 ± 0.8 % and 29.0 ± 2.4 %). The gluten quality of most lines, derived from crossing spring emmer with durum wheat, corresponds to quality group I (good), and the gluten deformation index (GDI) is 50–75 units. T. timopheevii and T. durum var. falcatomelanopus were noticeable for vitreousness (99 ± 1 % and 75 ± 5 %, respec- tively). The grain hardness of the accessions under investigation varied from 151 ± 15 N in variety Romanivska to 286 ± ± 3 N in T. timopheevii. Lines 10–79 (255 ± 6 N), 10–65 (220 ± 10 N) and T. durum var. falcatomelanopus (268 ± 6 N) were characterized by high hardness, which exceeded that of durum wheat variety Spadshchyna (152 ± ± 13 N). High outputs of groats were intrinsic to line 10–139 (96.2 ± 0.8 %), line 10–79 (90.6 ± 0.8 %), T. timopheevii (92.0 ± 0.1 %), and durum wheat Spadshchyna (91.4 ± 0.5 %). All the studied accessions showed low variability (



2021 ◽  
Vol 8 (2) ◽  
pp. 62-74
Author(s):  
L. Vecherska ◽  
V. Liubych ◽  
L. Relina ◽  
O. Golik ◽  
V. Suchkova ◽  
...  

Aim. To explore sources of high groats properties among the genetic diversity of emmer and related species. Methods. Biochemical: The protein content was determined by Kjeldahl digestion; the starch content – by infrared spectroscopy. Technological: the vitreousness was determined by cutting 100 caryopses and expressed as percent- ages. The hull content, expressed in percent, was estimated as the ratio of hulled caryopses to the total of fully threshed ones. The gluten content and quality were assessed by manual washing-out. The hardness was determined on a YPD-300 hardness tester (Ltpm China) as the force in newtons required for caryopsis destruction. Emmer groats were obtained on a laboratory peeler UShZ-1. The groats properties were evaluated according to the method described in a utility model patent No. 129205. Statistical: the significance of differences between accessions was assessed using the Mann-Whitney test for small samples with unknown distribution. Two-factor analysis of vari- ance considered 2 factors – genotype and year conditions. Pearson’s test was used in the correlation analysis. The variability of traits was assessed by the coefficient of variation (CV). Results. The yields of emmer and durum wheat accessions and varieties as well as lines derived from emmer-wheat hybrids were measured and analyzed in 2016–2019. The yields of most emmer accessions (except for T. timopheevii) were similar to that of the check em- mer variety Holikovska (286 ± 15 g/m2). The highest contents of protein and gluten were found in T. timopheevii (18.1 ± 0.4 % and 40.5 ± 1.8 %, respectively), Triticum durum Desf. var. falcatomelanopus Jakubz. & Filat. (17.5 ± ± 1.0 % and 40.4 ± 1.4 %), autochthonous variety Polba 3 (16.8 ± 0.1 % and 36.9 ± 1.1 %), and line 10–139 (14.8 ± 0.8 % and 29.0 ± 2.4 %). The gluten quality of most lines, derived from crossing spring emmer with durum wheat, corresponds to quality group I (good), and the gluten deformation index (GDI) is 50–75 units. T. timopheevii and T. durum var. falcatomelanopus were noticeable for vitreousness (99 ± 1 % and 75 ± 5 %, respec- tively). The grain hardness of the accessions under investigation varied from 151 ± 15 N in variety Romanivska to 286 ± ± 3 N in T. timopheevii. Lines 10–79 (255 ± 6 N), 10–65 (220 ± 10 N) and T. durum var. falcatomelanopus (268 ± 6 N) were characterized by high hardness, which exceeded that of durum wheat variety Spadshchyna (152 ± ± 13 N). High outputs of groats were intrinsic to line 10–139 (96.2 ± 0.8 %), line 10–79 (90.6 ± 0.8 %), T. timopheevii (92.0 ± 0.1 %), and durum wheat Spadshchyna (91.4 ± 0.5 %). All the studied accessions showed low variability (



RSC Advances ◽  
2021 ◽  
Vol 11 (58) ◽  
pp. 36494-36501
Author(s):  
Pirom Didpinrum ◽  
Watsaka Siriangkhawut ◽  
Kraingkrai Ponhong ◽  
Piyanete Chantiratikul ◽  
Kate Grudpan

The combination of a newly designed sticker-plastic sheet platform, smartphone-based digital imaging and down scaled Kjeldahl digestion is proposed for the determination of protein contents in food samples.



2016 ◽  
Vol 105 (6) ◽  
pp. 1851-1857 ◽  
Author(s):  
Hsiaoling Wang ◽  
Nagarani Pampati ◽  
William M. McCormick ◽  
Lokesh Bhattacharyya




2012 ◽  
Vol 518-523 ◽  
pp. 4745-4748
Author(s):  
Qing Wang ◽  
Sha Chen ◽  
Pei Guang Zhao ◽  
Yu Cao ◽  
Long Fei Zhu ◽  
...  

A kind of double-coated environmental friendly fertilizer was prepared by urea as a core, well-mixed keratin and oxidation starch as an inner coating, and superabsorbent polymer as the outer coating. The influence of water absorbency, water retention, and the slow-release behavior of the study fertilizer were investigated. 0.01M CaCl2 immersion extraction and Kjeldahl digestion method were used to measure the content of nitrogen. And the result showed that the nutrient release was 72wt% on the thirtieth day. This result corresponded with the standard of slow release fertilizers of the Committee of European Normalization (CEN) [1]. Keratin and oxidation starch were biodegradable polymer and nontoxic. Both the properties of the materials and the result of the slow-release behavior suggested a new kind of excellent, environmental friendly, slow-release fertilizer.



HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1173-1174 ◽  
Author(s):  
Bruno Razeto ◽  
Jorge Salgado

A tissue analysis trial for the diagnosis of nitrogen level was performed during the 2001 growing season in Paine County, Metropolitan Region, Chile. Seven-year-old `Hass' avocado (Persea americana Mill.) trees were soil treated with urea at rates of 0, 333, 666, and 999 g N/tree, split in two applications (2 and 4 months after fruit set). Each treatment was applied to three randomly selected trees. Fifty spring flush leaves and fifteen fruit peduncles were taken per tree 4 months after application. Two months later, 70 panicles per tree were taken, and nitrogen concentration in these samples was determined by Kjeldahl digestion. Differences between treatments were better detected in peduncle and inflorescence samples than in leaf samples. The relationship between nitrogen dose and nitrogen concentration in the tissue was R2 = 0.67, 0.65, and 0.56 in peduncle, leaf, and inflorescence, respectively. Consequently, peduncle appears a promising tissue, probably better than leaf, for diagnosing the nitrogen status of avocado trees.



Sign in / Sign up

Export Citation Format

Share Document