The removal of methyl violet 2B dye using palm kernel activated carbon: thermodynamic and kinetics model

2019 ◽  
Vol 17 (3) ◽  
pp. 1773-1782 ◽  
Author(s):  
H. V. Mehr ◽  
J. Saffari ◽  
S. Z. Mohammadi ◽  
S. Shojaei
Chemosphere ◽  
2021 ◽  
pp. 131632
Author(s):  
Rauf Foroutan ◽  
Reza Mohammadi ◽  
Amir Ahmadi ◽  
Gholamreza Bikhabar ◽  
Fatemeh Babaei ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 1119
Author(s):  
Margaretha Aditya Kurnia Purnaningtyas ◽  
Sri Sudiono ◽  
Dwi Siswanta

The activated carbon-chitosan-alginate (KKA) beads powder was synthesized to form an adsorbent for the cationic dyes, methylene blue (MB) and methyl violet 2B (MV 2B). The aims of this research were to determine the optimum composition of KKA beads powder for the adsorption of cationic dyes and to investigate the effect of pH, adsorbent mass, contact time, and initial concentration of MB and MV 2B dyes. A desorption study was also implemented to predict the adsorption mechanisms of MB and MV 2B dyes. The KKA beads powder was prepared by mixing chitosan, Na-alginate with various variation of masses (0.6; 0.8; 1.0; and 1.2 g) and activated carbon. The KKA beads were immersed in a CaCl2 solution. The KKA beads powder was characterized using FTIR spectroscopy and SEM. The desorption study was conducted in NaCl (0.1 M and 1.0 M), ethanol (40% and 60%), and pH 4 solution. The result showed that the KKA beads powder had been successfully created, with maximum adsorption capacities of 1.34 mmol g–1 for MB and 1.23 mmol g–1 for MV 2B. The kinetics and isotherms of MB and MV dyes adsorption on the KKA beads powder followed pseudo second order kinetics model and Freundlich isotherm. The desorption study showed that 60% ethanol was the most effective desorption solution for cationic dyes.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Aseel M. Aljeboree ◽  
Asmaa Y. Al-Baitai ◽  
Saifaldeen M. Abdalhadi ◽  
Ayad F. Alkaim

Author(s):  
Y. Yerima ◽  
I. Eiroboyi ◽  
I. Eiroboyi

Biomass-based activated carbon has received large attention due to its excellent characteristics such as inexpensiveness, good absorption behaviour, and potential to reduce strong dependence towards non-renewable precursors. The potential use of Palm Kernel Shell in modified activated carbon was evaluated by using the Response Surface Methodology. In this study, a 23 three-level Central Composite Design (CCD) was used to develop a statistical model for the optimization of process variables, contact time (10-130mins) X1, pH (5.0 – 8.0) X2, and adsorbent dose (0.4 -5.0g) X3. The investigation shows that Ethylene Di-Amine Tetra-Acetic Acid modified activated carbon prepared from Palm Kernel Shell is a promising adsorbent for the removal of copper ions from aqueous solutions over a wide range of concentrations with an optimized efficiency of 99% at the solution pH of 7.2, contact time of 70 minutes and adsorbent dose of 2.1g/L. The adsorption results are in line with the linear and quadratic model representation, which is evident from the models for optimization of copper ions.


2019 ◽  
Vol 6 (2) ◽  
pp. 106-112
Author(s):  
Hassan Rezaei ◽  
Saeedeh Rastegar ◽  
Sanaz Naseri

Developing an adsorbent with natural components is one of the effective methods to reduce the amount of wastewater pollutants. Wastewater reuse can improve the quality of water prior to entering the natural environment. The aim of this study was to evaluate the efficiency of chitosan nano-composite and activated carbon adsorbent in the removal of nitrite, phosphate, and ammonia pollutants from fish farms of Aq-Qala. To prepare the adsorbents, the shrimp shells were converted to nano-chitosan. The date palm kernel was prepared and activated with oxalic acid in pyrolysis furnace by injecting nitrogen gas into activated carbon, then, the nano-composite was prepared from nanochitosan and activated carbon. A field-laboratory study was conducted during the winter of 2018, and then, batches of synthesized nano-composite were investigated and the effects of pH, initial effluent concentration, and adsorption time were investigated. The experiments were performed in the pH range of 5-8, effluent concentration of 25-100 mg/L, and contact time of 15-90 minutes. The results showed that at optimum conditions (pH of 7, effluent concentration of 50 mg/L, and contact time of 60 minutes), the highest removal percentage and adsorption capacity for nitrite, phosphate, and ammonia contaminants were 99.98%, 99.77%, and 65.65%, and 6.65, 6.14, and 7.32 mg/g , respectively. Due to the high removal percentage (99.98%) of the chitosan and activated carbon nano-composite, the adsorbent was highly capable of removing pollutants (nitrite, phosphate, and ammonia).


2016 ◽  
Vol 5 (1) ◽  
pp. 52-57
Author(s):  
Irvan ◽  
Olyvia Putri Wardhani ◽  
Nurul Aini ◽  
Iriany

Crude palm oil (CPO) is the richest natural source of carotenoids which gives the reddish-orange color in crude palm oil. The reddish color in  unprocessed palm oil is disliked by consumer. This research is aimed to adsorb the β–carotene from the CPO using activated carbon, then the kinetics, isotherm models and thermodynamics data of the adsorption process were obtained. The main materials used in this research were CPO and activated carbon. The observed parameters were final concentration  and the amounts of adsorbed β–carotene in activated carbon. The adsorption process was conducted by mixing the adsorbent with CPO with the variation of adsorbent: CPO (w/w) ratio = 1 : 3; 1 : 4; 1 : 5 and 1 : 6 with mixing  speed 120 rpm and the temperature of 40, 50 and 60 oC. The sample of CPO and activated carbon was analyzed at every 2 minutes until the equilibrium was achieved. The final concentration of the unadsorbed β–carotene was analyzed using UV-Vis spectrophotometer. The results showed that the more CPO used in the process, the lower the adsorption percentage. The higher the adsorption temperature, the higher  adsorption percentage. Moreover, the maximum adsorption percentage was 95.108%  obtained at ratio 1 : 3 and T = 60 oC. The adsorption isotherm model which fit with the β–carotene adsorption at T = 60 oC was Langmuir model with the correlation coefficient of 0.959. The adsorption kinetics model which fit with the β–carotene adsorption was the second order kinetics model with the correlation coefficient of 0.998. The value of free energy Gibbs (ΔG) = -24,482.484 ; -24,708.059 and -24,933.634 J/mol for each temperature respectively, value of entropy changes (ΔS) = 22.557 J/mol K, and value of enthalpy changes (ΔH) = -17,421.987 J/mol.


Sign in / Sign up

Export Citation Format

Share Document