scholarly journals The Therapeutic Effects of Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells on Scleroderma

Author(s):  
Yue Yu ◽  
Liangliang Shen ◽  
Xiaoyun Xie ◽  
Jingjun Zhao ◽  
Miao Jiang

Abstract Background: Scleroderma is a multisystem disease in which tissue fibrosis is caused by inflammation and vascular damage. The mortality of scleroderma has remained high due to a lack of effective treatments. However, exosomes derived from human umbilical cord mesenchymal stem cells (HUMSCs)-Ex have been regarded as potential treatments for various autoimmune diseases, and may also act as candidates for treating scleroderma. Methods: Mice with scleroderma received a single 50 μg HUMSCs-Ex. HUMSCs-Ex was characterized using transmission electron microscopy, nanoparticle tracking analysis and nanoflow cytometry. The therapeutic efficacy was assessed using histopathology, immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay and western blot. Results: HUMSCs-Ex ameliorated the deposition of extracellular matrix and suppressed the epithelial-mesenchymal transition process, and the effects lasted at least three weeks. In addition, HUMSCs-Ex promoted M1 macrophage polarization and inhibited M2 macrophage polarization, leading to the restoration of the balance of M1/M2 macrophages. Conclusion: We investigated the potential antifibrotic and anti-inflammatory effects of HUMSCs-Ex in a bleomycin-induced mouse model of scleroderma. So HUMSCs-Ex could be considered as a candidate therapy for scleroderma.

2021 ◽  
Author(s):  
Feng Zhu ◽  
Yihuan Chen ◽  
Jingjing Li ◽  
Ziying Yang ◽  
Yang Lin ◽  
...  

Abstract Background- Exosomes derived from human umbilical cord mesenchymal stem cells (UMSCs-Exo) were recommended as ideal substitutes for cell-free cardiac regenerative medicine, which had presented encouraging effects in regulating inflammation and attenuating myocardial injury. The phenotype of macrophages resident in myocardium were regulated dynamically in response to environmental cues, which may either protect against injury or promote maladaptive remodeling. However, the underlying mechanisms about UMSCs-Exo regulating macrophage polarization are still not well understood. Herein, we aimed to explore the effects of UMSCs-Exo on macrophage polarization and their roles in cardiac repair after myocardial infarction (MI). Methods and Results- Exosomes were isolated from the supernatant of human umbilical cord mesenchymal stem cells (UMSCs) and transplanted by intramyocardial injection after MI. Our results showed that UMSCs-Exo improved cardiac function by increasing M2 macrophage polarization and reducing excessive inflammation. After depletion of macrophages with clodronate liposomes, the therapeutic effects of UMSCs-Exo were disrupted. Administrated with UMSC-Exo, macrophages are inclined to polarize towards M2 phenotype in inflammatory environment in vitro. The results of RNA-sequencing indicated Plcb3 was a key gene concerned in UMSCs-Exo facilitated M2 macrophage polarization. Further bioinformatics analysis revealed exosomal miR-24-3p as a potential effector mediated Plcb3 down regulation in macrophages. Increasing miR-24-3p expression in macrophages effectively enhanced M2 macrophage polarization by suppressing Plcb3 expression and NF-κB pathway activation in inflammatory environment. Furthermore, diminishing miR-24-3p expression in UMSCs-Exo attenuated the effects of UMSCs-Exo on M2 macrophage polarization. Conclusions- Our study demonstrated that macrophages, as important inflammatory regulators, participated in UMSCs-Exo mediated myocardial repair after MI. And the therapeutical effects were at least partially carried out by UMSCs-Exo promoting M2 macrophage polarization in an inflammatory microenvironment. Mechanically, exosomal miR-24-3p inhibits the expression of Plcb3 and NF-κB pathway activation to promote M2 macrophage polarization.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Li Jinfeng ◽  
Wang Yunliang ◽  
Liu Xinshan ◽  
Wang Yutong ◽  
Wang Shanshan ◽  
...  

The purpose of this study is to evaluate the therapeutic effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) activated by curcumin (CUR) on PC12 cells induced by 1-methyl-4-phenylpyridinium ion (MPP+), a cell model of Parkinson’s disease (PD). The supernatant of hUC-MSC and hUC-MSC activated by 5 µmol/L CUR (hUC-MSC-CUR) were collected in accordance with the same concentration. The cell proliferation and differentiation potential to dopaminergic neuronal cells and antioxidation were observed in PC12 cells after being treated with the above two supernatants and 5 µmol/L CUR. The results showed that the hUC-MSC-CUR could more obviously promote the proliferation and the expression of tyrosine hydroxylase (TH) and microtubule associated protein-2 (MAP2) and significantly decreased the expression of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in PC12 cells. Furtherly, cytokines detection gave a clue that the expression of IL-6, IL-10, and NGF was significantly higher in the group treated with the hUC-MSC-CUR compared to those of other two groups. Therefore, the hUC-MSC-CUR may be a potential strategy to promote the proliferation and differentiation of PD cell model, therefore providing new insights into a novel therapeutic approach in PD.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xingfu Li ◽  
Yujie Liang ◽  
Xiao Xu ◽  
Jianyi Xiong ◽  
Kan Ouyang ◽  
...  

Background. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) possess great promise as a therapeutic to repair damaged cartilage. Direct intra-articular injection of mesenchymal stem cells has been shown to reduce cartilage damage and is advantageous as surgical implantation and associated side effects can be avoided using this approach. However, the efficacy of stem cell-based therapy for cartilage repair depends highly on the direct interactions of these stem cells with chondrocytes in the joint. In this study, we have carried out an in vitro cell-to-cell contact coculture study with human articular chondrocytes (hACs) and hUC-MSCs, with the goal of this study being to evaluate interactions between hACs and hUC-MSCs. Methods. Low-density monolayer cultures of hUC-MSCs and hACs were mixed at a ratio of 1 : 1 in direct cell-to-cell contact groups. Results were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. Results. A mixed coculture of hUC-MSCs and hACs was found to exhibit synergistic interactions with enhanced differentiation of hUC-MSCs and reduced dedifferentiation of chondrocytes. Mixed cultures after 21 days were found to exhibit sufficient chondrogenic induction. Conclusions. The results from this study suggest the presence of mutual effects between hUC-MSCs and hACs even culture at low density and provide further support for the use of intra-articular injection strategies for cartilage defect treatment.


Sign in / Sign up

Export Citation Format

Share Document