Development of Large Direct Shear Test Apparatus for Passive Bolt Reinforced Mass

2018 ◽  
Vol 49 (1) ◽  
pp. 124-131
Author(s):  
Lok Priya Srivastava ◽  
Mahendra Singh ◽  
Jattinder Singh
Author(s):  
Jakub Stacho ◽  
Monika Sulovska ◽  
Ivan Slavik

The paper deals with the laboratory testing of coarse-grained soils that are reinforced using a geogrid. The shear strength properties were determined using a large-scale direct shear test apparatus. The tests were executed on original as well as on reinforced soil, when the geogrid was placed on a sliding surface, which permitted determining the shear strength properties of the soil-geogrid interface. The aim of the tests was to determine the interface shear strength coefficient α, which represents the ratio of the shear strength of the soil-geogrid interface to the unreinforced soil. The tests were executed on 3 samples of coarse-grained materials, i.e., poorly graded sand, poorly graded fine gravel and poorly graded medium gravel. Two types of geogrids were tested, i.e., a woven polyester geogrid and a stiff polypropylene geogrid. The results of the laboratory tests on the medium gravel showed that the reduction coefficient α reached higher values in the case of the stiff polypropylene geogrid. In the cases of the fine gravel and sand, the values of the interface coefficient α were similar to each other. The shear strength of the interface was reduced or was similar to the shear strength of unreinforced soil in a peak shear stress state, but significantly increased with horizontal deformations, especially for the fine gravel and sand. The largest value of the coefficient α was measured in the critical shear stress state. Based on the results of the testing, a correlation which allows for determining the optimal grain size distribution was obtained.


Landslides ◽  
1997 ◽  
Vol 34 (2) ◽  
pp. 57-61_1
Author(s):  
Ryojiro KISHIMOTO ◽  
Jun YOSHIDA

2011 ◽  
Vol 6 (2) ◽  
pp. 351-360
Author(s):  
Junichi KOMATSU ◽  
Hiroshi OIKAWA ◽  
Hiroshi MURAOKA ◽  
Seiki WAGA ◽  
Naoyuki SATO ◽  
...  

Author(s):  
Xin Tan ◽  
Ya-kun Ren ◽  
Teng-long Li ◽  
Su-hua Zhou ◽  
Jiu-chang Zhang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanhui Cheng ◽  
Weijun Yang ◽  
Dongliang He

Structural plane is a key factor in controlling the stability of rock mass engineering. To study the influence of structural plane microscopic parameters on direct shear strength, this paper established the direct shear mechanical model of the structural plane by using the discrete element code PFC2D. From the mesoscopic perspective, the research on the direct shear test for structural plane has been conducted. The bonding strength and friction coefficient of the structural plane are investigated, and the effect of mesoscopic parameters on the shear mechanical behavior of the structural plane has been analyzed. The results show that the internal friction angle φ of the structural plane decreases with the increase of particle contact stiffness ratio. However, the change range of cohesion is small. The internal friction angle decreases first and then increases with the increase of parallel bond stiffness ratio. The influence of particle contact modulus EC on cohesion c is relatively small. The internal friction angle obtained by the direct shear test is larger than that obtained by the triaxial compression test. Parallel bond elastic modulus has a stronger impact on friction angle φ than that on cohesion c. Under the same normal stress conditions, the shear strength of the specimens increases with particle size. The shear strength of the specimen gradually decreases with the increase of the particle size ratio.


Sign in / Sign up

Export Citation Format

Share Document