Opioid Analgesic Agents and Cancer Cell Biology

2015 ◽  
Vol 5 (3) ◽  
pp. 278-284 ◽  
Author(s):  
Nan Xie ◽  
Marie-Odile Parat
2012 ◽  
Vol 2 (12) ◽  
pp. 415-416
Author(s):  
Dr. Priyanka R Prasad ◽  
◽  
Dr. Anju N Duttargi ◽  
Dr. Sreeshyla H.S Dr. Sreeshyla H.S ◽  
Dr. Usha Hegde ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Lungwani Muungo

ADP ribosylation factor GTPase-activating protein 3 (ARFGAP3) is a GTPase-activating protein that associates with the Golgiapparatus and regulates the vesicular trafficking pathway. In the present study, we examined the contribution of ARFGAP3 toprostate cancer cell biology. We showed that ARFGAP3 expression was induced by 100 nM of dihydrotestosterone (DHT) atboth the mRNA and protein levels in androgen-sensitive LNCaP cells. We generated stable transfectants of LNCaP cells withFLAG-tagged ARFGAP3 or a control empty vector and showed that ARFGAP3 overexpression promoted cell proliferation andmigration compared with control cells. We found that ARFGAP3 interacted with paxillin, a focal adhesion adaptor protein thatis important for cell mobility and migration. Small interfering RNA (siRNA)-mediated knockdown of ARFGAP3 showed thatARFGAP3 siRNA markedly reduced LNCaP cell growth. Androgen receptor (AR)-dependent transactivation activity on prostatespecificantigen (PSA) enhancer was synergistically promoted by exogenous ARFGAP3 and paxillin expression, as shown byluciferase assay in LNCaP cells. Thus, our results suggest that ARFGAP3 is a novel androgen-regulated gene that can promoteprostate cancer cell proliferation and migration in collaboration with paxillin.


2012 ◽  
Vol 12 (4) ◽  
pp. 303-315 ◽  
Author(s):  
Carmen Garcia-Ruiz ◽  
Albert Morales ◽  
Jose C. Fernandez-Checa

2019 ◽  
Vol 19 (4) ◽  
pp. 473-486 ◽  
Author(s):  
Katarzyna Bednarska-Szczepaniak ◽  
Damian Krzyżanowski ◽  
Magdalena Klink ◽  
Marek Nowak

Background: Adenosine released by cancer cells in high amounts in the tumour microenvironment is one of the main immunosuppressive agents responsible for the escape of cancer cells from immunological control. Blocking adenosine receptors with adenosine analogues and restoring immune cell activity is one of the methods considered to increase the effectiveness of anticancer therapy. However, their direct effects on cancer cell biology remain unclear. Here, we determined the effect of adenosine analogues on the response of cisplatinsensitive and cisplatin-resistant ovarian cancer cells to cisplatin treatment. Methods: The effects of PSB 36, DPCPX, SCH58261, ZM 241385, PSB603 and PSB 36 on cisplatin cytotoxicity were determined against A2780 and A2780cis cell lines. Quantification of the synergism/ antagonism of the compounds cytotoxicity was performed and their effects on the cell cycle, apoptosis/necrosis events and cisplatin incorporation in cancer cells were determined. Results: PSB 36, an A1 receptor antagonist, sensitized cisplatin-resistant ovarian cancer cells to cisplatin from low to high micromolar concentrations. In contrast to PSB 36, the A2AR antagonist ZM 241385 had the opposite effect and reduced the influence of cisplatin on cancer cells, increasing their resistance to cisplatin cytotoxicity, decreasing cisplatin uptake, inhibiting cisplatin-induced cell cycle arrest, and partly restoring mitochondrial and plasma membrane potentials that were disturbed by cisplatin. Conclusion: Adenosine analogues can modulate considerable sensitivity to cisplatin of ovarian cancer cells resistant to cisplatin. The possible direct beneficial or adverse effects of adenosine analogues on cancer cell biology should be considered in the context of supportive chemotherapy for ovarian cancer.


2020 ◽  
Vol 9 (3) ◽  
pp. 164-184
Author(s):  
Raymond Brewer ◽  
Kenneth Blum ◽  
Abdalla Bowirrat ◽  
Edward J. Modestino ◽  
David Baron ◽  
...  

Neuroscientists and psychiatrists working in the areas of “pain and addiction” are asked in this perspective article to reconsider the current use of dopaminergic blockade (like chronic opioid agonist therapy), and instead to consider induction of dopamine homeostasis by putative pro-dopamine regulation. Pro-dopamine regulation could help pharmaceutical opioid analgesic agents to mitigate hypodopaminergia-induced hyperalgesia by inducing transmodulation of dopaminergic signaling. An optimistic view is that early predisposition to diagnosis based on genetic testing, (pharmacogenetic/pharmacogenomic monitoring), combined with appropriate urine drug screening, and treatment with pro-dopamine regulators, could conceivably reduce stress, craving, relapse, enhance well-being and attenuate unwanted hyperalgesia. These concepts require intensive investigation. However, based on the rationale provided herein, there is a good chance that combining opioid analgesics with genetically directed pro-dopamine-regulation using KB220 (supported by 43 clinical studies). This prodopamine regulator may become a front-line technology with the potential to overcome, in part, the current heightened rates of chronic opioid-induced hyperalgesia and concomitant Reward Deficiency Syndrome (RDS) behaviors. Current research does support the hypothesis that low or hypodopaminergic function in the brain may predispose individuals to low pain tolerance or hyperalgesia.


PROTEOMICS ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 1970161
Author(s):  
Viktor Brovkovych ◽  
Alyssa Aldrich ◽  
Nasi Li ◽  
G. Ekin Atilla‐Gokcumen ◽  
Jonna Frasor

2006 ◽  
Vol 97 (9) ◽  
pp. 801-806 ◽  
Author(s):  
Kenji Tanabe ◽  
Shunsuke Kon ◽  
Waka Natsume ◽  
Tetsuo Torii ◽  
Toshio Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document