scholarly journals Microstructure and properties of porous Si3N4 ceramics by gelcasting-self-propagating high-temperature synthesis (SHS)

Author(s):  
Shile Chen ◽  
Liang Wang ◽  
Gang He ◽  
Jiangtao Li ◽  
Chang-An Wang

AbstractPorous silicon nitride ceramics have attracted a considerable attention due to their excellent overall performance, but poor porosity homogeneity and structural shrinkage induced by prolonged high temperature sintering limit its further application. Herein, as a three-in-one solution for the above issues, for the first time we develop a novel approach that integrates the merits of gelcasting-SHS (self-propagating high-temperature synthesis) to prepare porous Si3N4 ceramics to simultaneously achieve high porosity, high strength, high toughness, and low thermal conductivity across a wide temperature range. By regulating the solid content, porous Si3N4 ceramics with homogeneous pore structure are obtained, where the pore size falls inbetween 1.61 and 4.41 µm, and the elongated grains are interlaced and interlocked to form micron-sized coherent interconnected pores. At the same time, porous Si3N4 ceramics with porosity of 67.83% to 78.03% are obtained, where the compressive strength reaches 11.79 to 47.75 MPa and fracture toughness reaches 1.20 to 6.71 MPa·m1/2.

RSC Advances ◽  
2019 ◽  
Vol 9 (19) ◽  
pp. 10508-10519 ◽  
Author(s):  
Tiezheng Hu ◽  
Yonggao Yan ◽  
Si Wang ◽  
Xianli Su ◽  
Wei Liu ◽  
...  

Cu2Se is a promising material for thermoelectric energy conversion. Fully dense single-phase bulk Cu2Se was prepared by the combination of self-propagating high-temperature synthesis with in situ quick pressing for the first time.


2007 ◽  
Vol 43 (4) ◽  
pp. 239-242
Author(s):  
S. Kh. Suleimanov ◽  
O. A. Dudko ◽  
V. G. Dyskin ◽  
Z. S. Settarova ◽  
M. U. Dzhanklych

2015 ◽  
Vol 25 (12) ◽  
pp. 659-665
Author(s):  
Sin Hyong Joo ◽  
Hayk H. Nersisyan ◽  
Tae Hyuk Lee ◽  
Young Hee Cho ◽  
Hong Moule Kim ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2426
Author(s):  
Vladimir Promakhov ◽  
Alexey Matveev ◽  
Nikita Schulz ◽  
Mikhail Grigoriev ◽  
Andrey Olisov ◽  
...  

Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.


Sign in / Sign up

Export Citation Format

Share Document