Joining of copper nanowires by electrodepositing silver layer for high-performance transparent electrode

Author(s):  
He Zhang ◽  
Shang Wang ◽  
Chunjin Hang ◽  
Yanhong Tian
2018 ◽  
Vol 10 (11) ◽  
pp. 9571-9578 ◽  
Author(s):  
Yixiong Ji ◽  
Jun Yang ◽  
Wei Luo ◽  
Linlong Tang ◽  
Xiangxing Bai ◽  
...  

2020 ◽  
Vol 1014 ◽  
pp. 131-136
Author(s):  
Chun Hong Zeng ◽  
Yong Jian Ma ◽  
Bao Shun Zhang ◽  
Ya Meng Xu ◽  
Mei Kong

Broadband ultraviolet (BUV) photodetectors are widely used in military and civil fields. A high performance BUV photodetector based on graphene/β-Ga2O3/GaN heterojunction is proposed and realized by semiconductor micro-fabrication techniques in this paper. The β-Ga2O3 and GaN films are grown by metal organic chemical vapor deposition (MOCVD), and the graphene is also used as a transparent electrode. The device exhibits a broad response band from 230 nm to 368 nm with responsivity exceeding 0.4A/W at -5 V bias voltage and a peak responsivity of 0.53 A/W at 256 nm. These performances can be attributed to the internal gain mechanism of graphene/β-Ga2O3/GaN heterojunction and the optical properties of graphene. Our work provides an efficient method to realize a high-performance BUV photodetector for photoelectric applications.


2020 ◽  
Vol 31 (31) ◽  
pp. 314001 ◽  
Author(s):  
Linlin Shi ◽  
Jingcheng Song ◽  
Ye Zhang ◽  
Guohui Li ◽  
Wenyan Wang ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 218 ◽  
Author(s):  
Duc-Thinh Vuong ◽  
Ha-My Hoang ◽  
Nguyen-Hung Tran ◽  
Hyun-Chul Kim

Copper nanowires (Cu NWs) are a promising alternative to indium tin oxide (ITO), for use as transparent conductors that exhibit comparable performance at a lower cost. Furthermore, Cu NWs are flexible, a property not possessed by ITO. However, the Cu NW-based transparent electrode has a reddish color and tends to deteriorate in ambient conditions due to the oxidation of Cu. In this paper, we propose a pulsed-current (PC) plating method to deposit nickel onto the Cu NWs in order to reduce oxidation over a 30-day period, and to minimize the sheet resistance. Additionally, the effects of the pulse current, duty cycle, and pulse frequency on the performance of the Cu–Ni (copper–nickel) NW films have also been investigated. As a result, the reddish color of the electrode was eliminated, as oxidation was completely suppressed, and the sheet resistance was reduced from 35 Ω/sq to 27 Ω/sq. However, the transmittance decreased slightly from 86% to 76% at a wavelength of 550 nm. The Cu–Ni NW electrodes also exhibited excellent long-term cycling stability after 6000 bending cycles. Our fabricated Cu–Ni electrodes were successfully applied in flexible polymer-dispersed liquid crystal smart windows.


2016 ◽  
Vol 87 (10) ◽  
pp. 1192-1202 ◽  
Author(s):  
Toty Onggar ◽  
Gosbert Amrhein ◽  
Anwar Abdkader ◽  
Rolf-Dieter Hund ◽  
Chokri Cherif

High-performance yarns such as aramid fibers are nowadays used to reinforce composite materials due to their advantageous physico-chemical properties and their low weight. They are also resistant to heat and fire. Para-aramid filament yarns (p-AFs) wound on a cylindrical dyeing package have been silvered successfully by means of a newly developed wet-chemical filament yarn metallization process on a laboratory scale. The surface morphology of untreated and silvered p-AF was determined by means of scanning electron microscopy. The chemical structure of the surfaces (contents of carbon, oxygen, nitrogen and silver) was determined by means of energy-dispersive X-ray spectroscopy (EDX). The eliminated and newly formed groups of p-AF before and after silvering were detected by infrared spectroscopy (Fourier transform—attenuated total reflectance). After metallization, the silver layer thickness, the mass-related silver content and washing and rubbing fastness were assessed. Furthermore, textile-physical examinations concerning Young's modulus, elongation at break and electrical conductivity were performed. Subsequently, the electrically conductive p-AFs were integrated in thermoset composite materials reinforced by glass fibers and para-aramid.


Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 473 ◽  
Author(s):  
Linlin Shi ◽  
Yanxia Cui ◽  
Yupeng Gao ◽  
Wenyan Wang ◽  
Ye Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document