scholarly journals Functionally Graded Stainless Steel Fabricated by Direct Laser Deposition: Anisotropy of Mechanical Properties and Hardness

2017 ◽  
Vol 31 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Qiang Wang ◽  
Song Zhang ◽  
Chun-Hua Zhang ◽  
Chen-Liang Wu ◽  
Ling Ren ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5595
Author(s):  
André Alves Ferreira ◽  
Omid Emadinia ◽  
João Manuel Cruz ◽  
Ana Rosanete Reis ◽  
Manuel Fernando Vieira

Functionally graded material (FGM) based on Inconel 625 and AISI 431 stainless steel powders was produced by applying the direct laser deposition (DLD) process. The FGM starts with layers of Inconel 625 and ends with layers of 431 stainless steel having three intermediate zones with the composition (100-X)% Inconel 625-X% 431 stainless steel, X = 25, 50, and 75, in that order. This FGM was deposited on a 42CrMo4 steel substrate, with and without preheating. Microstructures of these FGMs were evaluated, while considering the distribution of chemical composition and grain structure. Microstructures mainly consisted of columnar grains independent of preheating condition; epitaxial growth was observed. The application of a non-preheated substrate caused the formation of planar grains in the vicinity of the substrate. In addition, hardness maps were produced. The hardness distribution across these FGMs confirmed a smooth transition between deposited layers; however, the heat-affected zone was greatly influenced by the preheating condition. This study suggests that an optimum Inconel 625/AISI 431 FGM obtained by DLD should not exceed 50% AISI 431 stainless steel.


CIRP Annals ◽  
2010 ◽  
Vol 59 (1) ◽  
pp. 211-214 ◽  
Author(s):  
M. Schmidt ◽  
R. Kolleck ◽  
A. Grimm ◽  
R. Veit ◽  
K. Bartkowiak

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 926
Author(s):  
Ainhoa Riquelme ◽  
Pilar Rodrigo ◽  
María Dolores Escalera-Rodriguez ◽  
Pablo García-Fogeda ◽  
Joaquín Rams

Aluminium matrix composite coatings reinforced with AlN nanopaticles have been manufactured by direct laser deposition on an AA6082 alloy substrate. The reinforcement of the composite has been generated by the direct nitridation reaction of the feed powder with the carrier gas (N2) heated by an HPDL beam during the fabrication of the coating. The coating obtained consists of nano-sized AlN particles in an aluminium matrix, and the crystalline structure of the obtained AlN depends on the characteristics of the powder used. In this work, the influence of the feed powder composition is studied by comparison among pure aluminium, Al12-Si alloy, and AA6061 alloy, on the formation of AlN and its crystalline structure. A correlation was established between the temperature distribution reached by the particles, their composition, and the nitridation reaction mechanisms. The effect of the reinforcement was evaluated by comparing the microstructure and mechanical properties (microhardness, nanoindentation) of the composite costing with non-reinforced Al coatings and uncoated AA6082. Al/AlN composite coatings with improved properties were achieved, reaching hardness values that were 65% higher than coatings without reinforcement.


Sign in / Sign up

Export Citation Format

Share Document