scholarly journals Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy

Author(s):  
Xi Zhao ◽  
Fa-Fa Yan ◽  
Zhi-Min Zhang ◽  
Peng-Cheng Gao ◽  
Shu-Chang Li
2016 ◽  
Vol 677 ◽  
pp. 125-132 ◽  
Author(s):  
Yuchun Yuan ◽  
Aibin Ma ◽  
Xiaofan Gou ◽  
Jinghua Jiang ◽  
Godfred Arhin ◽  
...  

2011 ◽  
Vol 291-294 ◽  
pp. 1082-1086
Author(s):  
Yao Jin Wu ◽  
Zhi Ming Zhang ◽  
Bao Cheng Li ◽  
Bao Hong Zhang ◽  
Jian Min Yu ◽  
...  

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75) and extrusion temperature (300°C, 330°C, 360°C, 390°C, 420°C) on the mechanical properties and microstructure changes of AZ80 magnesium alloy have been investigated through tensile test and via ZEISS digital metallographic microscope observation. Research indicates that the alloy’s plasticity gradually decreases as the temperature increases, and that the alloy’s tensile strength varies with the extrusion ratio. At 330°C, the alloy’s particle grain is small and a small amount of black hard and brittle second-phase β (Mg17Al12) are precipitated uniformly along the grain boundary causing the gradual increase of the alloy’s tensile strength. When the extrusion temperature is up to 390°C, the grain size increases significantly, but the second phase precipitation along grain boundaries transforms into continuous and uniform-distribution precipitation within the grain. In this case, when the extrusion ratio is 60, the alloy’s tensile strength reaches its peak 390 Mpa. As the extrusion temperature increases, inhomogeneous precipitation of the second-phase along grain boundaries increases, causing the decrease of the alloy’s strength. At the same temperature, both the tensile strength and plasticity increases firstly and then decreases as extrusion ratio increases. With the gradual increase of the refinement grain, the dispersed precipitates increase and the alloy’s tensile strength and plasticity reach their peaks when the extrusion temperature is 390°C. As the grain grows, the second phase becomes inhomogeneous distribution, and the alloy’s strength and plasticity gradually decrease.


2012 ◽  
Vol 271-272 ◽  
pp. 17-20
Author(s):  
Shu Yan Wu ◽  
Ze Sheng Ji ◽  
Chun Ying Tian ◽  
Ming Zhong Wu

This work is to study the influence of heat treatment on microstrudture and mechanical properties of AZ31B magnesium alloy prepared by solid -state recycling. AZ31B magnesium alloy chips were recycled by hot extruding. Three different heat treatments were conducted for recycled alloy. Mechanical properties and microstructure of the recycled specimen and heat treated specimen were investigated. 300°C×2h annealing specimen exhibits finer grain due to static recrystallization, and microstructure of 400°C×2h annealing specimen becomes more coarse. 300°C×2h annealing treatment improves obviously strength and ductility of recycled alloy. Ultimate tensile strength of alloy decreases and elongation to failure increases after 400°C×2h annealing. Grain size, dislocation density and bonding of chips have an effect on the elongation of recycled materials. 190°C×8h ageing has no influence on microstructure and mechanical properties of recycled alloy.


2012 ◽  
Vol 479-481 ◽  
pp. 27-30
Author(s):  
Ju Mei Zhang ◽  
Zhi Hu Wang ◽  
Wan Chang Sun ◽  
Li Bin Niu

The atomic diffusion and mechanical properties of as-cast AZ80 magnesium alloy after solution treatment at different time were studied by OM,SEM,EDS as well as tensile testing. The results show that the coarse β-Mg17Al12 phase distributed along the grain boundaries as net microstructure is almost dissolved after solution treatment, and the content of Al that in the α-Mg matrix is well distributed with the solution time prolonged. Because of the β-Mg17Al12 phase reducing and granulating, the function of precipitates phase strengthening was depressed and the hardness (HB) of alloy dropped obviously. However, the tensile strength(σb ) and elongation(δ) enhanced remarkably and the yield strength (σ0.2) decreased slightly.


Sign in / Sign up

Export Citation Format

Share Document