Synthesis of Micro-Mesoporous Ti-MOR/Silica Composite Spheres in Oil-in-water Microemulsion System

Author(s):  
Hao Xu ◽  
Yanhong Wang ◽  
Rusi Peng ◽  
Jingang Jiang ◽  
Kun Zhang ◽  
...  
2006 ◽  
Vol 3 (1) ◽  
pp. 8-21
Author(s):  
Mahdi Jufri ◽  
◽  
Effionora Anwar ◽  
Putri Margaining Utami

Various solubilization techniques have been developed to enhance the bioavailability of hydrophobic drugs. One of the solubilization techniques is preparation of microemulsion. Microemulsion is a potential carrier in drug delivery system because it has many advantageous characteristics. In this research, hydrophobic drug was made in a dosage form of oil in water (O/W) microemulsion using ketoprofen as a model and investigated the influence of adding starch hydrolisates with dextrose equivalent (DE) 35-40 in variety concentrations (0,0%; 1,5%; 2,0%; 2,5%) to the stability of this microemulsion system. This microemulsion consisted of isopropyl miritate as oil phase, tween 80 and lechitin as surfactants, ethanol as cosurfactant, propylene glycol as cosolvent, starch hydrolisates DE 35–40 as stabilizer, and water as external phase. The evaluation was stability test both phisically and chemically. The result showed that the stability of microemulsion system increased significantly by adding starch hydrolisates DE 35-40 at 2,5%.


2021 ◽  
Author(s):  
Elham H. Hazfi

The preparation and properties of water-in-oil (W/O) emulsions stabilised solely by adsorbed surface-active solid lipid nanoparticles (SLNs) at the oil-water interface were studied. Monostearin-based SLNs were prepared using food-grade micoremulsions as nanoscle 'reactors'. Hot oil-in-water (O/W) microemulsions (70°C) consisting of monostearin, Tween 20, ethanol and water were crash-cooled to 4°C to promote the liquid-solid transition of the monostearin and thus develop sub-micron solid lipid particles. SLNs obtained from the cooled microemulsions were partially stabilised with addition to lecithin (0.5% w/w) to the microemulsion system. With 2% (w/w) added monstearin, the W/O emulsion was stable for the 14 days of study. The microstructure of the emulsions revealed the presence of two stabilisation mechanisms, namely Pickering-type and continuous phase crystal network stabilisation, which both contributed to slowing dispersed droplet coalescence. Overall, this study demonstrated that surface-active SLNs developed using a microemulsion technique could effectively kinetically stabilise model W/O emulsions.


2011 ◽  
Vol 399-401 ◽  
pp. 673-676 ◽  
Author(s):  
Jing Jing Ma ◽  
Bo Lin Wu

The main objective of this work was to prepare high purity α-alumina powder (α-Al2O3) by mixed oil-in-water microemulsion route. In this study α-alumina was prepared by quaternary microemulsion system (water/surfactant/co-surfactant/oil-phase). OP-10, alcohol and the mixed solution of cyclohexane and aluminium isopropoxide were used as surfactant, co-surfactant and oil-phase, respectively. After drying the amorphous precursor powder, α-alumina powder is obtained by sintering at 1200°C for 3-5h. The X-ray diffraction pattern shows the presence of alumina phase with crystal structure and the slow scan with step size 0.0170°/sec of selected diffraction peaks such as (113) has been recorded and calculated by Scherer’s formula. The average crystallite size is about 40nm.


2009 ◽  
Vol 48 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Guorong Duan ◽  
Aimei Li ◽  
Xujie Yang ◽  
Lude Lu ◽  
Xin Wang

2002 ◽  
Vol 01 (05n06) ◽  
pp. 437-441 ◽  
Author(s):  
HUI WANG ◽  
YINONG LU ◽  
JUNJIE ZHU

Cube-shaped CdS nanoparticles have been successfully prepared by a sonochemical method in an oil-in-water microemulsion. The product was characterized by using techniques including X-ray powder diffraction, high-resolution transmission electron microscopy, energy-dispersive X-ray analysis and UV-visible absorption spectroscopy. This microemulsion system in the presence of high-intensity ultrasound irradiation provides special conditions for the nucleation and growth of the CdS nanoparticles.


2008 ◽  
Vol 110 (1) ◽  
pp. 156-162 ◽  
Author(s):  
Roshan Paul ◽  
Conxita Solans ◽  
Pilar Erra

2021 ◽  
Author(s):  
Elham H. Hazfi

The preparation and properties of water-in-oil (W/O) emulsions stabilised solely by adsorbed surface-active solid lipid nanoparticles (SLNs) at the oil-water interface were studied. Monostearin-based SLNs were prepared using food-grade micoremulsions as nanoscle 'reactors'. Hot oil-in-water (O/W) microemulsions (70°C) consisting of monostearin, Tween 20, ethanol and water were crash-cooled to 4°C to promote the liquid-solid transition of the monostearin and thus develop sub-micron solid lipid particles. SLNs obtained from the cooled microemulsions were partially stabilised with addition to lecithin (0.5% w/w) to the microemulsion system. With 2% (w/w) added monstearin, the W/O emulsion was stable for the 14 days of study. The microstructure of the emulsions revealed the presence of two stabilisation mechanisms, namely Pickering-type and continuous phase crystal network stabilisation, which both contributed to slowing dispersed droplet coalescence. Overall, this study demonstrated that surface-active SLNs developed using a microemulsion technique could effectively kinetically stabilise model W/O emulsions.


Sign in / Sign up

Export Citation Format

Share Document