Time-Varying Shadows of Quasi-Periodic Motion Across Sections of the Flow Within Nearly Time-Periodic Three-Body Dynamics

Author(s):  
Davide Guzzetti ◽  
Hexi Baoyin
2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Thomas Eiter ◽  
Mads Kyed

AbstractThe equations governing the flow of a viscous incompressible fluid around a rigid body that performs a prescribed time-periodic motion with constant axes of translation and rotation are investigated. Under the assumption that the period and the angular velocity of the prescribed rigid-body motion are compatible, and that the mean translational velocity is non-zero, existence of a time-periodic solution is established. The proof is based on an appropriate linearization, which is examined within a setting of absolutely convergent Fourier series. Since the corresponding resolvent problem is ill-posed in classical Sobolev spaces, a linear theory is developed in a framework of homogeneous Sobolev spaces.


1989 ◽  
Vol 11 (3) ◽  
pp. 257-258 ◽  
Author(s):  
M. Brauner ◽  
J. S. Briggs ◽  
H. Klar

Author(s):  
Matthew S. Allen

A variety of systems can be faithfully modeled as linear with coefficients that vary periodically with time or Linear Time-Periodic (LTP). Examples include anisotropic rotorbearing systems, wind turbines, satellite systems, etc… A number of powerful techniques have been presented in the past few decades, so that one might expect to model or control an LTP system with relative ease compared to time varying systems in general. However, few, if any, methods exist for experimentally characterizing LTP systems. This work seeks to produce a set of tools that can be used to characterize LTP systems completely through experiment. While such an approach is commonplace for LTI systems, all current methods for time varying systems require either that the system parameters vary slowly with time or else simply identify a few parameters of a pre-defined model to response data. A previous work presented two methods by which system identification techniques for linear time invariant (LTI) systems could be used to identify a response model for an LTP system from free response data. One of these allows the system’s model order to be determined exactly as if the system were linear time-invariant. This work presents a means whereby the response model identified in the previous work can be used to generate the full state transition matrix and the underlying time varying state matrix from an identified LTP response model and illustrates the entire system-identification process using simulated response data for a Jeffcott rotor in anisotropic bearings.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093750
Author(s):  
Hao Dong ◽  
Jianwen Zhang ◽  
Libang Wang

In order to study the influence of tooth surface friction on the non-linear bifurcation characteristics of multi-clearance gear drive system, a 6 degree-of-freedom bending torsional coupled vibration model was established. The time-varying mesh stiffness, backlash, support clearance and damping were considered comprehensively in this non-linear vibration model. Loaded tooth contact analysis was used to calculate the time-varying mesh stiffness. Based on the elasto-hydrodynamic lubrication, the time-varying friction coefficient was calculated. Runge–Kutta numerical method was used to solve the dimensionless dynamic differential equation. Using phase diagram, Poincaré diagram, time history diagram, and spectrum diagram, the influence of tooth surface friction on bifurcation characteristics was studied. The results show that the system undergoes a change from 1-periodic motion, multi-periodic motion, to chaotic motion through bifurcation and catastrophe when the speed changes independently. When the friction coefficient of tooth surface changes from 0, 0.05 to 0.09, the chaotic motion of the system is suppressed. Similarly, with the increase in tooth friction, the chaotic motion characteristics are suppressed. Tooth surface friction is the main factor affecting chaotic motion. With the increase in friction coefficient of tooth surface, the chaos characteristic does not change obviously and the vibration amplitude decreases slightly.


2009 ◽  
Vol 24 (11n13) ◽  
pp. 895-900 ◽  
Author(s):  
T. SATO ◽  
Y. IKEDA

The three-body resonance of [Formula: see text] system is investigated by using the [Formula: see text] coupled channels Faddeev equation. The resonance energy is determined from the pole of S -matrix on the unphysical sheet. It is found that the pole positions of the predicted amplitudes are significantly modified when the three-body dynamics is approximately treated by introducing the effective [Formula: see text] two-body interaction.


Sign in / Sign up

Export Citation Format

Share Document