scholarly journals Optimization Methods for Mixed Integer Weakly Concave Programming Problems

2014 ◽  
Vol 2 (2) ◽  
pp. 195-222 ◽  
Author(s):  
Zhi-you Wu ◽  
Fu-sheng Bai ◽  
Yong-jian Yang ◽  
Feng Jiang
2013 ◽  
Vol 58 (3) ◽  
pp. 863-866 ◽  
Author(s):  
J. Duda ◽  
A. Stawowy

Abstract In the paper we studied a production planning problem in a mid-size foundry that provides tailor-made cast products in small lots for a large number of clients. Assuming that a production bottleneck is the furnace, a mixed-integer programming (MIP) model is proposed to determine the lot size of the items and the required alloys to be produced during each period of the finite planning horizon that is subdivided into smaller periods. As using an advanced commercial MIP solvers may be impractical for more complex and large problem instances, we proposed and compared a few computational intelligence heuristics i.e. tabu search, genetic algorithm and differential evolution. The examination showed that heuristic approaches can provide a good compromise between speed and quality of solutions and can be used in real-world production planning.


Author(s):  
Marc Ju¨des ◽  
George Tsatsaronis

The design optimization of complex energy conversion systems requires the consideration of typical operation conditions. Due to the complex optimization task, conventional optimization methods normally take into account only one operation point that is, in the majority of cases, the full load case. To guarantee good operation at partial loads additional operation conditions have to be taken into account during the optimization procedure. The optimization task described in this article considers altogether four different operation points of a cogeneration plant. Modelling requirements, such as the equations that describe the partial load behavior of single components, are described as well as the problems that occur, when nonlinear and nonconvex equations are used. For the solution of the resulting non-convex mixed-integer nonlinear programming (MINLP) problem, the solver LaGO is used, which requires that the optimization problem is formulated in GAMS. The results of the conventional optimization approach are compared to the results of the new method. It is shown, that without consideration of different operation points, a flexible operation of the plant may be impossible.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Krystel K. Castillo-Villar ◽  
Neale R. Smith ◽  
José F. Herbert-Acero

This paper presents (1) a novel capacitated model for supply chain network design which considers manufacturing, distribution, and quality costs (named SCND-COQ model) and (2) five combinatorial optimization methods, based on nonlinear optimization, heuristic, and metaheuristic approaches, which are used to solve realistic instances of practical size. The SCND-COQ model is a mixed-integer nonlinear problem which can be used at a strategic planning level to design a supply chain network that maximizes the total profit subject to meeting an overall quality level of the final product at minimum costs. The SCND-COQ model computes the quality-related costs for the whole supply chain network considering the interdependencies among business entities. The effectiveness of the proposed solution approaches is shown using numerical experiments. These methods allow solving more realistic (capacitated) supply chain network design problems including quality-related costs (inspections, rework, opportunity costs, and others) within a reasonable computational time.


2019 ◽  
Vol 14 (4) ◽  
pp. 889-924 ◽  
Author(s):  
Michael J. Risbeck ◽  
Christos T. Maravelias ◽  
James B. Rawlings ◽  
Robert D. Turney

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4748
Author(s):  
Janne Huotari ◽  
Antti Ritari ◽  
Jari Vepsäläinen ◽  
Kari Tammi

We present a novel methodology for the control of power unit commitment in complex ship energy systems. The usage of this method is demonstrated with a case study, where measured data was used from a cruise ship operating in the Caribbean and the Mediterranean. The ship’s energy system is conceptualized to feature a fuel cell and a battery along standard diesel generating sets for the purpose of reducing local emissions near coasts. The developed method is formulated as a model predictive control (MPC) problem, where a novel 2-stage predictive model is used to predict power demand, and a mixed-integer linear programming (MILP) model is used to solve unit commitment according to the prediction. The performance of the methodology is compared to fully optimal control, which was simulated by optimizing unit commitment for entire measured power demand profiles of trips. As a result, it can be stated that the developed methodology achieves close to optimal unit commitment control for the conceptualized energy system. Furthermore, the predictive model is formulated so that it returns probability estimates of future power demand rather than point estimates. This opens up the possibility for using stochastic or robust optimization methods for unit commitment optimization in future studies.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ming-Hua Lin ◽  
Jung-Fa Tsai ◽  
Chian-Son Yu

With the increasing reliance on modeling optimization problems in practical applications, a number of theoretical and algorithmic contributions of optimization have been proposed. The approaches developed for treating optimization problems can be classified into deterministic and heuristic. This paper aims to introduce recent advances in deterministic methods for solving signomial programming problems and mixed-integer nonlinear programming problems. A number of important applications in engineering and management are also reviewed to reveal the usefulness of the optimization methods.


2020 ◽  
Vol 68 (5) ◽  
pp. 1517-1537 ◽  
Author(s):  
Hussein Hazimeh ◽  
Rahul Mazumder

In several scientific and industrial applications, it is desirable to build compact, interpretable learning models where the output depends on a small number of input features. Recent work has shown that such best-subset selection-type problems can be solved with modern mixed integer optimization solvers. Despite their promise, such solvers often come at a steep computational price when compared with open-source, efficient specialized solvers based on convex optimization and greedy heuristics. In “Fast Best-Subset Selection: Coordinate Descent and Local Combinatorial Optimization Algorithms,” Hussein Hazimeh and Rahul Mazumder push the frontiers of computation for best-subset-type problems. Their algorithms deliver near-optimal solutions for problems with up to a million features—in times comparable with the fast convex solvers. Their work suggests that principled optimization methods play a key role in devising tools central to interpretable machine learning, which can help in gaining a deeper understanding of their statistical properties.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 339 ◽  
Author(s):  
Mohammad Ali Bagherian ◽  
Kamyar Mehranzamir ◽  
Amin Beiranvand Pour ◽  
Shahabaldin Rezania ◽  
Elham Taghavi ◽  
...  

Energy generation and its utilization is bound to increase in the following years resulting in accelerating depletion of fossil fuels, and consequently, undeniable damages to our environment. Over the past decade, despite significant efforts in renewable energy realization and developments for electricity generation, carbon dioxide emissions have been increasing rapidly. This is due to the fact that there is a need to go beyond the power sector and target energy generation in an integrated manner. In this regard, energy systems integration is a concept that looks into how different energy systems, or forms, can connect together in order to provide value for consumers and producers. Cogeneration and trigeneration are the two most well established technologies that are capable of producing two or three different forms of energy simultaneously within a single system. Integrated energy systems make for a very strong proposition since it results in energy saving, fuel diversification, and supply of cleaner energy. Optimization of such systems can be carried out using several techniques with regards to different objective functions. In this study, a variety of optimization methods that provides the possibility of performance improvements, with or without presence of constraints, are demonstrated, pinpointing the characteristics of each method along with detailed statistical reports. In this context, optimization techniques are classified into two primary groups including unconstrained optimization and constrained optimization techniques. Further, the potential applications of evolutionary computing in optimization of Integrated Energy Systems (IESs), particularly Combined Heat and Power (CHP) and Combined Cooling, Heating, and Power (CCHP), utilizing renewable energy sources are grasped and reviewed thoroughly. It was illustrated that the employment of classical optimization methods is fading out, replacing with evolutionary computing techniques. Amongst modern heuristic algorithms, each method has contributed more to a certain application; while the Genetic Algorithm (GA) was favored for thermoeconomic optimization, Particle Swarm Optimization (PSO) was mostly applied for economic improvements. Given the mathematical nature and constraint satisfaction property of Mixed-Integer Linear Programming (MILP), this method is gaining prominence for scheduling applications in energy systems.


Author(s):  
Alexander S. Popkov ◽  

This article describes an algorithm for solving the optimal control problem in the case when the considered process is described by a linear system of ordinary differential equations. The initial and final states of the system are fixed and straight two-sided constraints for the control functions are defined. The purpose of optimization is to minimize the quadratic functional of control variables. The control is selected in the class of quadratic splines. There is some evolution of the method when control is selected in the class of piecewise constant functions. Conveniently, due to the addition/removal of constraints in knots, the control function can be piecewise continuous, continuous, or continuously differentiable. The solution algorithm consists in reducing the control problem to a convex mixed-integer quadratically-constrained programming problem, which could be solved by using well-known optimization methods that utilize special software.


Sign in / Sign up

Export Citation Format

Share Document