scholarly journals Classification and Analysis of Optimization Techniques for Integrated Energy Systems Utilizing Renewable Energy Sources: A Review for CHP and CCHP Systems

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 339 ◽  
Author(s):  
Mohammad Ali Bagherian ◽  
Kamyar Mehranzamir ◽  
Amin Beiranvand Pour ◽  
Shahabaldin Rezania ◽  
Elham Taghavi ◽  
...  

Energy generation and its utilization is bound to increase in the following years resulting in accelerating depletion of fossil fuels, and consequently, undeniable damages to our environment. Over the past decade, despite significant efforts in renewable energy realization and developments for electricity generation, carbon dioxide emissions have been increasing rapidly. This is due to the fact that there is a need to go beyond the power sector and target energy generation in an integrated manner. In this regard, energy systems integration is a concept that looks into how different energy systems, or forms, can connect together in order to provide value for consumers and producers. Cogeneration and trigeneration are the two most well established technologies that are capable of producing two or three different forms of energy simultaneously within a single system. Integrated energy systems make for a very strong proposition since it results in energy saving, fuel diversification, and supply of cleaner energy. Optimization of such systems can be carried out using several techniques with regards to different objective functions. In this study, a variety of optimization methods that provides the possibility of performance improvements, with or without presence of constraints, are demonstrated, pinpointing the characteristics of each method along with detailed statistical reports. In this context, optimization techniques are classified into two primary groups including unconstrained optimization and constrained optimization techniques. Further, the potential applications of evolutionary computing in optimization of Integrated Energy Systems (IESs), particularly Combined Heat and Power (CHP) and Combined Cooling, Heating, and Power (CCHP), utilizing renewable energy sources are grasped and reviewed thoroughly. It was illustrated that the employment of classical optimization methods is fading out, replacing with evolutionary computing techniques. Amongst modern heuristic algorithms, each method has contributed more to a certain application; while the Genetic Algorithm (GA) was favored for thermoeconomic optimization, Particle Swarm Optimization (PSO) was mostly applied for economic improvements. Given the mathematical nature and constraint satisfaction property of Mixed-Integer Linear Programming (MILP), this method is gaining prominence for scheduling applications in energy systems.

2022 ◽  
pp. 60-94
Author(s):  
Khaled Dassa ◽  
Abdelmadjid Recioui

The smart grid is the aggregation of emerging technologies in both hardware and software along with practices to make the existing power grid more reliable and ultimately more beneficial to consumers. The smart grid concept is associated with the production of electricity from renewable energy sources (RES). For the distant isolated regions, microgrids (MG) with RES are offering a suitable solution for remote and isolated region electrification. The improper sizing would lead to huge investment cost which could have been avoided. The objective of this chapter is to review the state-of-the-art studies on the use of optimization techniques to renewable energy design and sizing. The chapter reviews the optimization techniques employed at different components of the microgrid including the energy sources, storage elements, and converters/inverters with their control systems.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5892
Author(s):  
Luca Ciacci ◽  
Fabrizio Passarini

The transition towards renewable energy sources and “green” technologies for energy generation and storage is expected to mitigate the climate emergency in the coming years [...]


Author(s):  
A. Yevdokymova ◽  
S. Kolosok ◽  
N. Petrenko

The paper considers the use of renewable energy sources, the economic efficiency of their full-scale implementation, the policies of European countries on the development of energy systems and domestic energy networks. Existing energy networks in most cases do not meet modern market requirements. First, it concerns energy supply based on the renewable energy sources as most of the electricity is supplied to the electric networks in a decentralized way and only then to the consumers. Therefore, the key tool for successful energy redistribution should be the expansion of powerful regional transmission networks and local distribution networks. At the same time, consumption and conventional energy generation should become more flexible to meet market requirements. The use of “smart technologies”, especially digitalization with the help of smart energy meters, should be the driving tool to create new economic opportunities and simplify the coordination of energy generation and consumption. The use of “smart technologies” for renewable energy should be the basis for the energy systems development in Ukraine. International practices indicate the effectiveness of these technologies. The main advantage of their implementation is the security of energy supply to consumers, which significantly reduces carbon dioxide emissions as well as technological energy losses in the electric grid. One more advantage is the optimization of existing energy systems and their intelligent automation that allows the efficient use of renewable energy sources, reduction of the transmission losses through networks, the increase of the stability level of electricity supplies, the reduction of the negative impact of energy systems on the environment and meeting consumers’ needs for reliable energy supply. Keywords: energy technologies, power grids, energy technologies, smart technologies, smart grids.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2879
Author(s):  
Xinxin Liu ◽  
Nan Li ◽  
Feng Liu ◽  
Hailin Mu ◽  
Longxi Li ◽  
...  

Optimal design of regional integrated energy systems (RIES) offers great potential for better managing energy sources, lower costs and reducing environmental impact. To capture the transition process from fossil fuel to renewable energy, a flexible RIES, including the traditional energy system (TES) based on the coal and biomass based distributed energy system (BDES), was designed to meet a regional multiple energy demand. In this paper, we analyze multiple scenarios based on a new rural community in Dalian (China) to capture the relationship among the energy supply cost, increased share of biomass, system configuration transformation, and renewable subsidy according to regional CO2 emission abatement control targets. A mixed integer linear programming (MILP) model was developed to find the optimal solutions. The results indicated that a 40.58% increase in the share of biomass in the RIES was the most cost-effective way as compared to the separate TES and BDES. Based on the RIES with minimal cost, by setting a CO2 emission reduction control within 40%, the RIES could ensure a competitive total annual cost as compared to the TES. In addition, when the reduction control exceeds 40%, a subsidy of 53.83 to 261.26 RMB/t of biomass would be needed to cover the extra cost to further increase the share of biomass resource and decrease the CO2 emission.


Author(s):  
Mahesh Abdare

Abstract: DC Microgrid is going to be a very important part of the Distribution system soon. The given circumstances have forced us to find how to utilize renewable energy sources in the integration to increase its reliability in our day-to-day life. This paper gives a good idea of the DC Microgrid and various methods being used for the controlling part of it. As day by day cost incurred in renewable energy generation is decreasing, we need to find out significant parts where this kind of DC Microgrid can be utilized to provide electricity in all parts of the country. Keywords: DGUs, ImGs, DMA, OXD, DC Microgrid.


2021 ◽  
Author(s):  
özlem karadag albayrak

Abstract Turkey attaches particular importance to energy generation by renewable energy sources in order to remove negative economic, environmental and social effects caused by fossil resources in energy generation. Renewable energy sources are domestic and do not have any negative effect, such as external dependence in energy and greenhouse gas, caused by fossil resources and which constitute a threat for sustainable economic development. In this respect, the prediction of energy amount to be generated by Renewable Energy (RES) is highly important for Turkey. In this study, a generation forecasting was carried out by Artificial Neural Networks (ANN) and Autoregressive Integrated Moving Average (ARIMA) methods by utilising the renewable energy generation data between 1965-2019. While it was predicted by ANN that 127.516 TWh energy would be generated in 2023, this amount was estimated to be 45.457 TeraWatt Hour (TWh) by ARIMA (1.1.6) model. The Mean Absolute Percentage Error (MAPE) was calculated in order to specify the error margin of the forecasting models. This value was determined to be 13.1% by ANN model and 21.9% by ARIMA model. These results suggested that the ANN model provided a more accurate result. It is considered that the conclusions achieved in this study will be useful in energy planning and management.


Author(s):  
Radian Belu

The use of renewable energy sources is increasingly being pursued as a supplemental and an alternative to traditional energy generation. Several distributed energy systems are expected to a have a significant impact on the energy industry in the near future. As such, the renewable energy systems are presently undergoing a rapid change in technology and use. Such a feature is enabled clearly by power electronics. Both the solar-thermal and photovoltaic (PV) technologies have an almost exponential growth in installed capacity and applications. Both of them contribute to the overall grid control and power electronics research and advancement. Among the renewable energy systems, photovoltaic (PV) systems are the ones that make use of an extended scale of the advanced power electronics technologies. The specification of a power electronics interface is subject to the requirements related not only to the renewable energy source itself but also to its effects on the operations of the systems on which it is connected, especially the ones where these intermittent energy sources constitute a significant part of the total system capacity. Power electronics can also play a significant role in enhancing the performance and efficiency of PV systems. Furthermore, the use of appropriate power electronics enables solar generated electricity to be integrated into power grid. Aside from improving the quality of solar panels themselves, power electronics can provide another means of improving energy efficiency in PV and solar-thermal energy systems.


2015 ◽  
pp. 2016-2072
Author(s):  
Radian Belu

The use of renewable energy sources is increasingly being pursued as a supplemental and an alternative to traditional energy generation. Several distributed energy systems are expected to a have a significant impact on the energy industry in the near future. As such, the renewable energy systems are presently undergoing a rapid change in technology and use. Such a feature is enabled clearly by power electronics. Both the solar-thermal and photovoltaic (PV) technologies have an almost exponential growth in installed capacity and applications. Both of them contribute to the overall grid control and power electronics research and advancement. Among the renewable energy systems, photovoltaic (PV) systems are the ones that make use of an extended scale of the advanced power electronics technologies. The specification of a power electronics interface is subject to the requirements related not only to the renewable energy source itself but also to its effects on the operations of the systems on which it is connected, especially the ones where these intermittent energy sources constitute a significant part of the total system capacity. Power electronics can also play a significant role in enhancing the performance and efficiency of PV systems. Furthermore, the use of appropriate power electronics enables solar generated electricity to be integrated into power grid. Aside from improving the quality of solar panels themselves, power electronics can provide another means of improving energy efficiency in PV and solar-thermal energy systems.


Sign in / Sign up

Export Citation Format

Share Document