A new ridge estimation method on rank-deficient adjustment model

Author(s):  
Yingchun Song ◽  
Wenna Li ◽  
Caihua Deng ◽  
Xianqiang Cui
2020 ◽  
Author(s):  
tieding lu

<p> Uncertainties usually exist in the process of acquisition of measurement data, which affect the results of the parameter estimation. The solution of the uncertainty adjustment model can effectively improve the validity and reliability of parameter estimation. When the coefficient matrix of the observation equation has a singular value close to zero, i.e., the coefficient matrix is ill-posed, the ridge estimation can effectively suppress the influence of the ill-posed problem of the observation equation on the parameter estimation. When the uncertainty adjustment model is ill-posed, it is more seriously affected by the error of the coefficient matrix and observation vector. In this paper, the ridge estimation method is applied to ill-posed uncertainty adjustment model, deriving an iterative algorithm to improve the stability and reliability of the results. The derived algorithm is verified by two examples, and the results show that the new method is effective and feasible.</p>


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3483
Author(s):  
Kexin Liu ◽  
Weimin Bao ◽  
Yufeng Hu ◽  
Yiqun Sun ◽  
Dongjing Li ◽  
...  

The ridge estimation-based dynamic system response curve (DSRC-R) method, which is an improvement of the dynamic system response curve (DSRC) method via the ridge estimation method, has illustrated its good robustness. However, the optimization criterion for the ridge coefficient in the DSRC-R method still needs further study. In view of this, a new optimization criterion called the balance and random degree criterion considering the sum of squares of flow errors (BSR) is proposed in this paper according to the properties of model-simulated residuals. In this criterion, two indexes, namely, the random degree of simulated residuals and the balance degree of simulated residuals, are introduced to describe the independence and the zero mean property of simulated residuals, respectively. Therefore, the BSR criterion is constructed by combining the sum of squares of flow errors with the two indexes. The BSR criterion, L-curve criterion and the minimum sum of squares of flow errors (MSSFE) criterion are tested on both synthetic cases and real-data cases. The results show that the BSR criterion is better than the L-curve criterion in minimizing the sum of squares of flow residuals and increasing the ridge coefficient optimization speed. Moreover, the BSR criterion has an advantage over the MSSFE criterion in making the estimated rainfall error more stable.


2014 ◽  
Vol 578-579 ◽  
pp. 1028-1031
Author(s):  
Hui Yong Guo ◽  
Mao Sheng ◽  
Zheng Liang Li

In order to identify structural damage locations and extent, a method based on ridge estimation and modal strain energy is presented in this paper. First, structural modal strain energy is given and a modal strain energy sensitivity damage equation is obtained. Then, considering the TikhonovTT regularization theoryTT, a ridge estimation method is proposed to solve the damage equation and ridge parameter of the method is optimized. Simulation results demonstrate that the proposed damage detection method based on ridge estimation and modal strain energy can identify structural damage locations and extent with good accuracy.


2021 ◽  
Author(s):  
Zhijian Zhou ◽  
Zhilong Liu ◽  
Wenduo Li ◽  
Yihang Wang ◽  
Chao Wang

Abstract. Aeromagnetic exploration is an important method of geophysical exploration. We study the compensation method of towed bird system and establish the towed bird interference model. Due to the low altitude of the helicopter, the geomagnetic gradient changes greatly, so the geomagnetic gradient is considered in the towed bird interference model. In this paper, we model the gradient of the geomagnetic field as vertical gradient and horizontal gradient components, analyze the influence of the towed bird system on the compensation results under different motion modes, and apply the ridge estimation method to solve the problem. We verify the feasibility of this compensation method through actual flight tests, and further improve the data quality of the towed bird interference.


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141987205 ◽  
Author(s):  
QW Yang

The ill-posed least squares problems often arise in many engineering applications such as machine learning, intelligent navigation algorithms, surveying and mapping adjustment model, and linear regression model. A new biased estimation (BE) method based on Neumann series is proposed in this article to solve the ill-posed problems more effectively. Using Neumann series expansion, the unbiased estimate can be expressed as the sum of infinite items. When all the high-order items are omitted, the proposed method degenerates into the ridge estimation or generalized ridge estimation method, whereas a series of new biased estimates can be acquired by including some high-order items. Using the comparative analysis, the optimal biased estimate can be found out with less computation. The developed theory establishes the essential relationship between BE and unbiased estimation and can unify the existing unbiased and biased estimate formulas. Moreover, the proposed algorithm suits for not only ill-conditioned equations but also rank-defect equations. Numerical results show that the proposed BE method has improved accuracy over the existing robust estimation methods to a certain extent.


1995 ◽  
Author(s):  
Nagykaldi Csaba ◽  
Manohar Singh Badhan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document