Assessment of point-mass solutions for recovering water mass variations from satellite gravimetry

Author(s):  
Yanan Yang ◽  
Vagner Ferreira ◽  
Kurt Seitz ◽  
Thomas Grombein ◽  
Bin Yong ◽  
...  
2014 ◽  
Vol 89 (3) ◽  
pp. 259-282 ◽  
Author(s):  
G. L. Ramillien ◽  
F. Frappart ◽  
S. Gratton ◽  
X. Vasseur

2021 ◽  
Vol 60 (2) ◽  
pp. 161-174
Author(s):  
Ayelen Pereira ◽  
Cecilia Cornero ◽  
Ana Cristina Oliveira Cancoro de Matos ◽  
Maria Cristina Pacino ◽  
Denizar Blitzkow

Despite present efforts to better understand glacier changes and their trends, the satellite gravimetry is a powerful tool still not applied in depth to study relatively large areas in the Andes of Argentina and Chile. In this work the mass variations of the Patagonian Icefield are analyzed together with the decrease trends of the ice layer in the region. The purpose of this study is to demonstrate the GRACE satellite mission (Gravity Recovery and Climate Experiment) ability to detect the water storage changes over the glaciers area. Furthermore, the variations of the hydrometric level of some Patagonian lakes were monitored by combining satellite altimetry data and in situ measurements with the observed water mass variations. Data from GRACE was used to estimate gravity trends, and high-resolution CSR GRACE RL05 mascon solutions were used to analyze the water storage change of the icefields in the region under study for the 2002-2017 period. Virtual stations from satellite altimetry obtained from a lake database and also hydrometric height data from in situ stations, located at Patagonian lakes in Argentina and Chile, were also used in order to compare the TWS from GRACE to the water level of the specific lakes. Additionally, correlation coefficients were determined at each station.  The results show a significant water storage decrease in the Icefield area, and they also demonstrate that the ice melt in southern Patagonia (of about 6 cm/year) tends to be more pronounced than in the northern region.


Author(s):  
William H. Zucker

Planktonic foraminifera are widely-distributed and abundant zooplankters. They are significant as water mass indicators and provide evidence of paleotemperatures and events which occurred during Pleistocene glaciation. In spite of their ecological and paleological significance, little is known of their cell biology. There are few cytological studies of these organisms at the light microscope level and some recent reports of their ultrastructure.Specimens of Globigerinoides ruber, Globigerina bulloides, Globigerinoides conglobatus and Globigerinita glutinata were collected in Bermuda waters and fixed in a cold cacodylate-buffered 6% glutaraldehyde solution for two hours. They were then rinsed, post-fixed in Palade's fluid, rinsed again and stained with uranyl acetate. This was followed by graded ethanol dehydration, during which they were identified and picked clean of debris. The specimens were finally embedded in Epon 812 by placing each organism in a separate BEEM capsule. After sectioning with a diamond knife, stained sections were viewed in a Philips 200 electron microscope.


Author(s):  
Keizo Negi ◽  
Keizo Negi ◽  
Takuya Ishikawa ◽  
Takuya Ishikawa ◽  
Kenichiro Iba ◽  
...  

Japan experienced serious water pollution during the period of high economic growth in 1960s. It was also the period that we had such damages to human health, fishery and living conditions due to red tide as much of chemicals, organic materials and the like flowing into the seas along the growing population and industries in the coastal areas. Notable in those days was the issues of environment conservation in the enclosed coastal seas where pollutants were prone to accumulate inside due to low level of water circulation, resulting in the issues including red tide and oxygen-deficient water mass. In responding to these issues, we implemented countermeasures like effluent control with the Water Pollution Control Law and improvement/expansion of sewage facilities. In the extensive enclosed coastal seas of Tokyo Bay, Ise Bay and the Seto Inland Sea, the three areas of high concentration of population, we implemented water quality total reduction in seven terms from 1979, reducing the total quantities of pollutant load of COD, TN and TP. Sea water quality hence has been on an improvement trend as a whole along the steady reduction of pollutants from the land. We however recognize that there are differences in improvement by sea area such as red tide and oxygen-deficient water mass continue to occur in some areas. Meanwhile, it has been pointed out that bio-diversity and bio-productivity should be secured through conservation/creation of tidal flats and seaweed beds in the view point of “Bountiful Sea” To work at these challenges, through the studies depending on the circumstances of the water environment in the enclosed coastal seas, we composed “The Policy of Desirable State of 8th TPLCS” in 2015. We have also added the sediment DO into the water quality standard related to the life-environmental items in view of the preservation of aquatic creatures in the enclosed water areas. Important from now on, along the Policy, is to proceed with necessary measures to improve water quality with good considerations of differences by area in the view point of “Beautiful and bountiful Sea”.


Sign in / Sign up

Export Citation Format

Share Document