Influence of heat transfer on the peristaltic transport of Walters B fluid in an inclined annulus

Author(s):  
K. Ramesh ◽  
M. Devakar
2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Siddharth Shankar Bhatt ◽  
Amit Medhavi ◽  
R. S. Gupta ◽  
U. P. Singh

In the present investigation, problem of heat transfer has been studied during peristaltic motion of a viscous incompressible fluid for two-dimensional nonuniform channel with permeable walls under long wavelength and low Reynolds number approximation. Expressions for pressure, friction force, and temperature are obtained. The effects of different parameters on pressure, friction force, and temperature have been discussed through graphs.


2020 ◽  
Vol 31 (09) ◽  
pp. 2050125
Author(s):  
Ahmed A. Afify ◽  
Nasser S. Elgazery

MHD viscoelastic (Walters’-B) fluid flow close to the stagnation point region along an extending plate with the changeable fluid properties’ influences has been debated. Heat transfer’s features are scrutinized via Cattaneo–Christov (CC) theory. The mathematical model for the physical problem is tackled numerically via Chebyshev pseudospectral (CPS) technique. The existing outcomes are supported by recent research and have acquired a suitable agreement. The numerical outcomes reveal that temperature fields are more pronounced for Fourier’s law case. Further, the opposite behavior is noticed with the heat transfer rate. Higher values of the conjugate parameter result in an increment of the heat transfer rate and temperature field. Fluid flow’s features, as well as physical quantities, are substantially varied via variable fluid properties.


Sign in / Sign up

Export Citation Format

Share Document