scholarly journals Analysis of lightning ablation damage performance of glass fiber reinforced polymer materials

Author(s):  
Zezhong Shan ◽  
Minghui Tian ◽  
Xiang Lu

AbstractGlass fiber-reinforced polymer materials have been effectively used in civil aviation aircraft, but due to low electrical conductivity, a large area of ablation damage will occur after lightning strikes, which greatly threatens the safety of civil aircrafts. Based on this, the coupled electrical-thermal finite element analysis model for a lightning ablation damage of glass fiber reinforced polymer materials is established, and the analysis results are compared with the experiment, and the error rate is 1.26%, which verifies the accuracy of the model. In addition, different influencing factors are analyzed to study the lightning protection characteristics of glass fiber reinforced polymer on carbon fiber-reinforced polymer laminates. The results show that glass fiber reinforced polymer materials have low lightning resistance, but they can effectively reduce the lightning ablation damage area of carbon fiber reinforced polymer laminates under the joint protection of them and aluminum coating. However, they have different protective effects on different protective forms of laminates. Among them, the thickness of aluminum coating has a higher impact on the lightning protection efficiency of full spraying aluminum protective laminates, and the thickness of glass fiber reinforced polymer materials has a higher impact on the lightning protection efficiency of local spraying aluminum protective laminates.

2015 ◽  
Vol 49 (28) ◽  
pp. 3539-3556 ◽  
Author(s):  
Carlos Pascual ◽  
Julia de Castro ◽  
André Kostro ◽  
Andreas Schueler ◽  
Anastasios P Vassilopoulos ◽  
...  

2016 ◽  
Vol 51 (7) ◽  
pp. 939-953 ◽  
Author(s):  
Carlos Pascual ◽  
Julia de Castro ◽  
Andreas Schueler ◽  
Thomas Keller

The encapsulation of dye solar cells in translucent, structural and lightweight glass fiber-reinforced polymer laminates was investigated with a view to designing multifunctional envelopes for daylit buildings. Small and large integrating sphere experiments and solar radiation experiments were performed to determine the light transmittance of the laminates and the electrical efficiency of the encapsulated cells. An overall cell efficiency of 3.9% (before encapsulation) only decreased to 3.4% after encapsulation below laminates of around 3-mm thickness. Thermal cycle experiments and finite element analysis allowed the thermal performance of the encapsulation for two types of cell substrates (glass and acrylic polymer) to be evaluated. Contrary to glass substrates, no delaminations were observed on acrylic substrates after 300 h of cycles +60/−20℃. A design for integrating dye solar cells into multifunctional sandwich building envelopes is proposed. A light transmittance of around 0.35 was estimated through a sandwich envelope with cell modules occupying 50% of the external face sheet. Research on the manufacturability of cells on polymeric substrates is encouraged.


2013 ◽  
Vol 48 (29) ◽  
pp. 3621-3636 ◽  
Author(s):  
Carlos Pascual ◽  
Julia de Castro ◽  
André Kostro ◽  
Andreas Schueler ◽  
Anastasios P Vassilopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document