Robust finite-time sliding mode synchronization of fractional-order hyper-chaotic systems based on adaptive neural network and disturbances observer

Author(s):  
Keyong Shao ◽  
Zihui Xu ◽  
Tingting Wang
2021 ◽  
pp. 002029402110211
Author(s):  
Tao Chen ◽  
Damin Cao ◽  
Jiaxin Yuan ◽  
Hui Yang

This paper proposes an observer-based adaptive neural network backstepping sliding mode controller to ensure the stability of switched fractional order strict-feedback nonlinear systems in the presence of arbitrary switchings and unmeasured states. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller. An observer is used for states estimation of the fractional order systems. The sliding mode control technology is introduced to enhance robustness. The unknown nonlinear functions and uncertain disturbances are approximated by the radial basis function neural networks (RBFNNs). The stability of system is ensured by the constructed Lyapunov functions. The fractional adaptive laws are proposed to update uncertain parameters. The proposed controller can ensure convergence of the tracking error and all the states remain bounded in the closed-loop systems. Lastly, the feasibility of the proposed control method is proved by giving two examples.


2020 ◽  
Vol 34 (07) ◽  
pp. 2050050 ◽  
Author(s):  
Fuzhong Nian ◽  
Xinmeng Liu ◽  
Yaqiong Zhang ◽  
Xuelong Yu

Combined with RBF neural network and sliding mode control, the synchronization between drive system and response system was achieved in module space and phase space, respectively (module-phase synchronization). The RBF neural network is used to estimate the unknown nonlinear function in the system. The module-phase synchronization of two fractional-order complex chaotic systems is implemented by the Lyapunov stability theory of fractional-order systems. Numerical simulations are provided to show the effectiveness of the analytical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chenhui Wang

Some sufficient conditions, which are valid for stability check of fractional-order nonlinear systems, are given in this paper. Based on these results, the synchronization of two fractional-order chaotic systems is investigated. A novel fractional-order sliding surface, which is composed of a synchronization error and its fractional-order integral, is introduced. The asymptotical stability of the synchronization error dynamical system can be guaranteed by the proposed fractional-order sliding mode controller. Finally, two numerical examples are given to show the feasibility of the proposed methods.


2009 ◽  
Vol 39 (4) ◽  
pp. 1856-1863 ◽  
Author(s):  
Chen Mou ◽  
Chang-sheng Jiang ◽  
Jiang Bin ◽  
Qing-xian Wu

Sign in / Sign up

Export Citation Format

Share Document