Optimal cutting condition determination for milling thin-walled details

2018 ◽  
Vol 6 (3) ◽  
pp. 280-290 ◽  
Author(s):  
Anton Germashev ◽  
Viktor Logominov ◽  
Dmitri Anpilogov ◽  
Yuri Vnukov ◽  
Vladimir Khristal
Author(s):  
Xiong Zhao ◽  
Lianyu Zheng ◽  
Yuehong Zhang

Abstract Mirror error compensation is usually employed to improve the machining precision of thin-walled parts. However, this zero-order method may result in inadequate error compensation, due to the time-varying cutting condition of thin-walled parts. To cope with this problem, an on-line first-order error compensation method is proposed for thin-walled parts. With this context, firstly, the time-varying cutting condition of thin-walled parts is defined with its in-process geometric and physical characteristics. Based on it, a first-order machining error compensation model is constructed. Then, during the process planning, the theory geometric and physical characteristic of thin-walled parts are respectively obtained with CAM software and structure dynamic modification method. After process performing, the real geometric characteristic of thin-walled parts is measured, and it is used to calculate the dimension error of thin-walled parts. Next, the error compensated value is evaluated based on the compensation model, from which, an error compensation plane is constructed to modify the tool center points for next process step. Finally, the machining error is compensated by performing the next process step. A milling test of thin-walled part is employed to verify the proposed method, and the experiment results shown that the proposed method can significantly improve the error compensation effect for low-stiffness structure, and thickness precision of thin-walled parts is improved by 71.4 % compared with the mirror error compensation method after machining.


2015 ◽  
Vol 4 (1(24)) ◽  
pp. 69
Author(s):  
Михаил Сергеевич Степанов ◽  
Марина Сергеевна Иванова

2013 ◽  
Vol 395-396 ◽  
pp. 1035-1039
Author(s):  
On Uma Lasunon

This study aimed to investigate the effect of cutting speed, feed and depth of cut on the arithmetic mean surface roughness (Ra). The optimal cutting condition in dry turning brass with carbide cutting tool was also recommended. The experimentation was designed by using Taguchi Method (L9). Three investigated factors with 3-level each were cutting speed (42, 68 and 110 m/min), feed (0.05, 0.1 and 0.15 mm/rev), and depth of cut (0.15, 0.25 and 0.5 mm). The results indicated that speed and feed were significantly affected at average surface roughness. The optimal cutting conditions were cutting speed at 68 m/min, feed at 0.05 mm/rev and depth of cut at 0.15 mm.


2012 ◽  
Vol 443-444 ◽  
pp. 622-627
Author(s):  
Hai Long Ma ◽  
Ai Jun Tang ◽  
Qing Kui Chen

In the process of milling thin-walled plate, chatter is one of the major limitations on productivity and part quality even for high speed and high precision milling machines. Therefore, it is necessary to avoid chatter with a suitable choice of cutting condition. This paper studies the dynamic stability models of milling the thin-walled plate by analyzing the geometrical relationship of cutting, and derives the mathematic expressions in theory. Moreover, this paper develops a three-dimensional lobes diagram of the spindle speed, the axial depth and the radial depth. Through the three-dimensional lobes, it is possible to choose the appropriate cutting parameters according to the dynamic behavior of the chatter system.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Lida Zhu ◽  
Baoguang Liu ◽  
Xiaobang Wang ◽  
Zhiwei Xu

Turn-milling is regarded as the milling of a curved surface while rotating the workpiece around its center point, which combines effectively the advantages of both turning and milling, wherein it allows for good metal removal with the difficult-to-cut thin-walled workpieces in aviation. The objective of the present work is to study cutting force by turn-milling in cutting condition. Aiming at the deformation properties of thin-walled blade, the predicted models of rigid cutting force and flexible cutting force with ball cutter are provided, respectively, in turn-milling process. The deformation values of blade and cutter are calculated, respectively, based on the engaged trajectory by using the iterative algorithm. The rigid and flexible cutting forces are compared and the influence degrees of cutting parameters on cutting forces are analyzed. These conclusions provide theoretical foundation and reference for turn-milling mechanism research.


Sign in / Sign up

Export Citation Format

Share Document