scholarly journals How to test the gauge-invariant non-local quantum dynamics of the Aharonov–Bohm effect

2014 ◽  
Vol 1 (3-4) ◽  
pp. 187-194 ◽  
Author(s):  
T. Kaufherr
2016 ◽  
Vol 14 (04) ◽  
pp. 1640013
Author(s):  
T. Kaufherr

The gauge invariant nonlocal quantum dynamics that is responsible for the Aharonov–Bohm (AB) effect is described. It is shown that it may be verified experimentally.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1191 ◽  
Author(s):  
Joan Bernabeu ◽  
Jose Navarro-Salas

A non-local action functional for electrodynamics depending on the electric and magnetic fields, instead of potentials, has been proposed in the literature. In this work we elaborate and improve this proposal. We also use this formalism to confront the electric-magnetic duality symmetry of the electromagnetic field and the Aharonov–Bohm effect, two subtle aspects of electrodynamics that we examine in a novel way. We show how the former can be derived from the simple harmonic oscillator character of vacuum electrodynamics, while also demonstrating how the magnetic version of the latter naturally arises in an explicitly non-local manner.


2016 ◽  
Vol 31 (28n29) ◽  
pp. 1645025
Author(s):  
Péter Hraskó

The apparent nonlocality of the Coulomb gauge external field problem in electrodynamics is illustrated with an example in which nonlocality is especially striking. Explanation of this apparent nonlocal behaviour based on a purely local picture is given. A gauge invariant decomposition of the Lorentz-force into two terms with clear physical meanings is pointed out. Based on this decomposition derivation of the Aharonov–Bohm effect in terms of field strengths alone is given.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050101
Author(s):  
Faizuddin Ahmed

In this paper, we study the relativistic quantum dynamics of spin-0 scalar charged particles with a magnetic quantum flux produced by topological defects in a rotating cosmic string space–time. We solve the Klein–Gordon equation subject to Coulomb-type scalar and vector potentials in the considered framework and obtain the energy eigenvalues and eigenfunctions and analyze the analogue effect to Aharonov–Bohm effect for bound states.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 915 ◽  
Author(s):  
Parthasarathi Majumdar ◽  
Anarya Ray

A fully relativistically covariant and manifestly gauge-invariant formulation of classical Maxwell electrodynamics is presented, purely in terms of gauge-invariant potentials without entailing any gauge fixing. We show that the inhomogeneous equations satisfied by the physical scalar and vector potentials (originally discovered by Maxwell) have the same symmetry as the isometry of Minkowski spacetime, thereby reproducing Einstein’s incipient approach leading to his discovery of special relativity as a spacetime symmetry. To arrive at this conclusion, we show how the Maxwell equations for the potentials follow from stationary electromagnetism by replacing the Laplacian operator with the d’Alembertian operator, while making all variables dependent on space and time. We also establish consistency of these equations by deriving them from the standard Maxwell equations for the field strengths, showing that there is a unique projection operator which projects onto the physical potentials. Properties of the physical potentials are elaborated through their iterative Nöther coupling to a charged scalar field leading to the Abelian Higgs model, and through a sketch of the Aharonov–Bohm effect, where dependence of the Aharonov–Bohm phase on the physical vector potential is highlighted.


2012 ◽  
Vol 97 (5) ◽  
pp. 50011 ◽  
Author(s):  
Nandan Satapathy ◽  
Deepak Pandey ◽  
Poonam Mehta ◽  
Supurna Sinha ◽  
Joseph Samuel ◽  
...  
Keyword(s):  

Author(s):  
Sandip Tiwari

Unique nanoscale phenomena arise in quantum and mesoscale properties and there are additional intriguing twists from effects that are classical in origin. In this chapter, these are brought forth through an exploration of quantum computation with the important notions of superposition, entanglement, non-locality, cryptography and secure communication. The quantum mesoscale and implications of nonlocality of potential are discussed through Aharonov-Bohm effect, the quantum Hall effect in its various forms including spin, and these are unified through a topological discussion. Single electron effect as a classical phenomenon with Coulomb blockade including in multiple dot systems where charge stability diagrams may be drawn as phase diagram is discussed, and is also extended to explore the even-odd and Kondo consequences for quantum-dot transport. This brings up the self-energy discussion important to nanoscale device understanding.


Sign in / Sign up

Export Citation Format

Share Document